Home > Publications

Publications

Programmed research projects

A01 Team Miyata

Makoto Miyata

論文
論文
論文
論文
論文
論文

  • Terahara N, Tulum I and *Miyata M. Transformation of crustacean pathogenic bacterium Spiroplasma eriocheiris and expression of yellow fluorescent protein. Biochemical and Biophysical Research Communication. in press.
  • *Kamada K, Su’etsugu M, Takada H, Miyata M and Hirano T. Overall shapes of the SMC-ScpAB complex are determined by balance between constraint and relaxation of its structural parts. Structure. in press.
  • Trussart M, Yus E, Martinez S, Baù D, Tahara YO, Pengo T, Widjaja M, Kretschmer S, Swoger J, Miyata M, Marti-Renom MA, *Lluch-Senar M and *Serrano L. Defined chromosome structure in a genome-reduced Mycoplasma pneumoniae Nature Communications. 8:14665 (2017)
  • Mizutani M and *Miyata M. Force measurement on Mycoplasma mobile gliding using optical tweezers. Bio protocol. 7: Iss 3, 2/5/2017 (2017)
  • ●Liu P, Zheng H, Meng Q, Terahara N, Gu W, Wang S, Zhao G, Nakane D, *Wang W and *Miyata M. Chemotaxis without conventional two-component system, based on cell polarity and aerobic conditions in helicity-switching swimming of Spiroplasma eriocheiris. Frontiers in Microbiology. 8: 58 (2017)
  • ●Kawakita Y, Kinoshita M, Furukawa Y, Tulum I, Tahara YO, Katayama E, Namba K and Miyata M. Structural study of MPN387, an essential protein for gliding motility of a human pathogenic bacterium, Mycoplasma pneumoniae. Journal of Bacteriology 198:2352-9. (2016) 
  • ●Tanaka A, Nakane D, Mizutani M, Nishizaka T and *Miyata M. Directed binding of gliding bacterium, Mycoplasma mobile, shown by detachment force and bond lifetime. mBio 7:e00455-16. (2016) 
  • *Miyata M and Hamaguchi T. Integrated information and prospects for gliding mechanism of the pathogenic bacterium Mycoplasma pneumoniae. Frontiers in Microbiology, 7:960 (2016)
  • Kawamoto A, Matsuo L, Kato T, Yamamoto H, Namba K and *Miyata M. Periodicity in attachment organelle revealed by electron cryotomography suggests conformational changes in gliding mechanism of Mycoplasma pneumoniae. mBio, 7(2): e00243-16 (2016)
  • Nakane D, Kenri T, Matsuo L and *Miyata M. Systematic structural analyses of attachment organelle in Mycoplasma pneumoniae. PLOS Pathogens, 11(12): e1005299 (2015)
  • *Miyata M and Hamaguchi T. Prospects for the gliding mechanism of Mycoplasma mobile. Current Opinion in Microbiology 29:15-21 (2016)
  • Morio H, Kasai T, and Miyata M. Gliding direction of Mycoplasma mobile. Journal of Bacteriology 198(2): 283-90 (2015)
  • ●Lee W, Kinosita Y, Oh Y, Mikami N, Yang H, Miyata M, Nishizaka T and *Kim D. Three-Dimensional Superlocalization Imaging of Gliding Mycoplasma mobile by Extraordinary Light Transmission through Arrayed Nanoholes. ACS Nano 9 (11): 10896-908 (2015)
  • Kasai T, Hamaguchi and *Miyata M. Gliding mtility of Mycoplasma mobile on uniform oligosaccharides. Journal of Bacteriology 197(18): 2952-2957 (2015)
  • ●Kinosita Y, Nakane D, Sugawa M, Masaike T, Mizutani K, Miyata M and Nishizaka T. Unitary step of gliding machinery in Mycoplasma mobile. Proc Natl Acad Sci USA111(23): 8601–8606 (2014)
  • Tulum I, Yabe M, Uenoyama A and *Miyata M. Localization of P42 and an F1-ATPase α-subunit homolog of the gliding machinery in Mycoplasma mobile revealed by newly developed gene manipulation and fluorescent protein tagging. J Bacteriol, 196: 1815-24 (2014)
  • ●*Miyata M,, Nakane D. 2013. Gliding mechanism of Mycoplasma pneumoniae subgroup implication from Mycoplasma mobile, p. 237-252. In G. Browning and C. Citti (ed.), Molecular and cell biology of Mollicutes. Horizon Press, Norfolk, UK.
  • ●Kasai T and *Miyata M and Nishizaka T. Analyzing inhibitory effects of reagents on Mycoplasma gliding and adhesion. Bio-protocol 3(14): e829 (2013)
  • Kamada K, Miyata M, Hirano T. Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB. Structure, 21(4):581-94(2013)
  • ●Taniguchi T, Miyauchi K, Nakane D, Miyata M, Muto A, Nishimura S, *Suzuki T. Decoding system for the AUA codon by tRNAIle with the UAU anticodon in Mycoplasma mobile. Nucleic Acids Res., 41(4):2621-31(2013)
  • ●Kasai T, Nakane D, Ishida H, Ando H, Kiso M and *Miyata M. Binding in Mycoplasma mobile and Mycoplasma pneumoniae gliding analyzed through inhibition by synthesized sialylated compounds. J Bacteriol, 195(3):429-35(2013),表紙の図に採用,
  • Wu HN and *Miyata M. Whole surface image of Mycoplasma mobile, suggested by protein identification and immunofluorescence microscopy. J Bacteriol, 194: 5848-55 (2012)
  • Adan-Kubo J, Yoshii SH, Kono H and *Miyata M. Molecular structure of isolated MvspI, a variable surface protein of the fish pathogen Mycoplasma mobile. J Bacteriol, 194: 3050-7 (2012) 表紙の図に採用,
  • ●Wu HN, Kawaguchi C, Nakane D and *Miyata M. "Mycoplasmal antigen modulation," a novel surface variation suggested for a lipoprotein specifically localized on Mycoplasma mobile. Curr Microbiol, 64: 433-40 (2012)
  • *Sato C, Manaka S, Nakane D, Nishiyama H, Suga M, Nishizaka T, Miyata M, and Maruyama Y. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM). Biochem Biophys Res Commun, 417: 1213-8 (2012)
  • Nakane D and *Miyata M. Mycoplasma mobile cells elongatby detergent and their pivoting movements in gliding. J Bacteriol, 194: 122-30 (2012) 表紙の図に採用,
Takayuki Nishizaka
  • ●Kinosita Y, Uchida N, Nakane D, Nishizaka T. Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum Nat Microbiol. 1:16148 (2016)
  • Yogo K, Ogawa T, Hayashi M, Harada Y, Nishizaka T and Kinosita K Jr. Direct observation of strand passage by DNA-topoisomerase and its limited processivity. PLoS One, 7(4): e34920(2012)
  • ● Kinosita Y, Nakane D, Sugawa M, Masaike T, Mizutani K, Miyata M, Nishizaka T. Unitary Step of Gliding Machinery in Mycoplasma mobile. Proc. Natl. Acad. Sci. USA, 111(23):8601-6 (2014)
  • Adachi K, Oiwa K, Yoshida M, Nishizaka T and Kinosita K Jr. Controlled rotation of the F1-ATPase reveals differential and continuous binding changes for ATP synthesis. Nature Communications, 3:1022(2012)
  • Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T and Kim D. Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules. Small, 8(6):892-900 (2012)
  • ●Sato C, Manaka S, Nakane D, Nishiyama H, Suga M, Nishizaka T, Miyata M and Maruyama Y. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM).Biochemical and Biophysical Research Communications, 417(4):1213-8 (2012)
Noriyuki Kodera
  • ●Terahara N, Kodera N, Uchihashi T, Ando T, Namba K* and Minamino T*.Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor Science Advances 3(11): eaao4119 (2017)
  • ●Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H, Furutani-Umezu N, Nakajima J, Noguchi TQP, Nagasaki A, Tokuraku K, Uyeda TQP. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci. Reports, 6:35449 (2016)
  • *Watanabe-Nakayama T, Itami M, Kodera N, Ando T and *Konno H. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Sci. Rep. 6:28975 (2016)
  • #Davies T, #Kodera N, Kaminski Schierle GS, Rees E, Erdelyi M, Kaminski CF, Ando T and *Mishima M. CYK4 Promotes Antiparallel Microtubule Bundling by Optimizing MKLP1 Neck Conformation. PLoS Biol. 13(4): e1002121 (2015) #Contributed equally
  • Uchihashi T, Kodera N and *Ando T. “High-speed Atomic Force Microscopy” in “Noncontact Atomic Force Microscopy”. Springer New York, (3): 481-518 (2015)
  • Uchihashi T, Kodera N and *Ando T. “Development of High-speed AFM and Its Biological Applications” in “Atomic Force Microscopy in Nanobiology”. Pan Stanford Publishing Singapore, 143-176 (2014)
  • ●Ngo KX, *Kodera N, Katayama E, Ando T and *Uyeda TQP. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. eLife, 2015 4:e04806(2015) 
  • Ishino S, Yamagami T, Kitamura M, Kodera N, Mori T, Sugiyama S, Ando T, Goda N, Tenno T, Hiroaki H and Ishino Y. Multiple interactions of the intrinsically disordered region between the helicase and the nuclease domains of the archaeal Hef protein. J. Biol. Chem,289(31):21627-21639 (2014)
  • Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, Blaas D, Gelbmann N, Gruber HJ, Ando T and Hinterdorfer P. IgGs are made for walking on bacterial and viral surfaces. Nature Communications, 5:4394 (2014)
  • Kodera N and Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev,1-24 (2014)
  • Uchihashi T, Kodera N and Ando T. “Nanovisualization of Proteins in Action Using High-speed AFM” in “Single-molecule Studies of Proteins”. Springer New York,(5):119-147 (2013)
  • Ando T, Uchihashi T, Kodera N, Shibata M, Yamamoto D and Yamashita H. “High-speed AFM for observing dynamic processes in liquid” in “Atomic Force Microscopy in Liquid”. Wiley-VCH,(7):189-210 (2012)
  • Ando T, Uchihashi T and Kodera N. High-Speed AFM and Applications to Biomolecular Systems. Annu. Rev. Biophys, 42:393-414 (2013)
  • Hashimoto M, Kodera N, Tsunaka Y, Oda M, Tanimoto M, Ando T, Morikawa K and Tate S. Phosphorylation-Coupled Intramolecular Dynamics of Unstructured Regions in Chromatin Remodeler FACT. Biophys J, 104:2222-2234 (2013)
  • *Nojima T, Konnno H, Kodera N, Seio K, Taguchi H and Yoshida M. Nano-scale alignment of proteins on a flexible DNA backbone. PLOS ONE, 7:e52534 (5pp) (2012)
  • *Ando T, Uchihashi T and Kodera N. High-speed atomic force microscopy. Jpn J Appl Phys, 51: 08KA02 (15 pp) (2012)
  • #Uchihashi T, #Kodera N and *Ando T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protocols, 7(6): 1193-1206 (2012) #Contributed equally
  • *Ando T and Kodera N. Visualization of mobility by atomic force microscopy. Methods Mol Biol, 896: 57-69 (2012)

A01 Team Mori

Hiroyuki Mori
  • ●Furukawa A, Yoshikaie K, Mori T, Mori H, Morimoto YV, Sugano Y, Iwaki S, Minamino T, Sugita Y, Tanaka Y and *Tsukazaki T. Tunnel formation inferred from the I-form structures of the proton-driven protein secretion motor SecDF Cell Reports 19:895-901 (2017)
  • Daimon Y, Iwama (Masui) C, Tanaka Y, Shiota T, Suzuki T, Miyazaki R, Sakurada H, Lithgow T, Dohmae N, Mori H, *Tsukazaki T, *Narita S and *Akiyama Y. The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery (BAM) complex. Molecular Microbiology  in press
  • Miyazaki R, Yura T, Suzuki T, Dohmae N, Mori H and *Akiyama Y. A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ(32). Scientfic reports 6:24147 doi:10.1038/srep24147 (2016)
  • Akiyama K, Mizuno S, Hizukuri Y, Mori H, Nogi T and *Akiyama Y. Roles of the membrane-reentrant β-hairpin-like loop of RseP protease in selective substrate cleavage. eLife 4:e08928 (2015)
  • ●Ishii E, Chiba S, Hashimoto N, Kojima S, Homma M, Ito K, Akiyama Y and *Mori H. Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria. PNAS 112(40):E5513-E5522 (2015)
  • ●Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, *Tsukazaki T and *Nureki O. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep. 4:7299 (2014)
  • Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, *Tsukazaki T and *Nureki O. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509(7501):516-20 (2014)
  • ●Mio K, Tsukazaki T, Mori H, Kawata M, Moriya T, Sasaki Y, Ishitani R, Ito K, *Nureki O and *Sato C. Conformational variation of the translocon enhancing chaperone SecDF. J Struct Funct Genomics 15(3):107-15 DOI 10.1007/s10969-013-9168-4 (2014)
Tomoya Tsukazaki
  • Daimon Y, Iwama (Masui) C, Tanaka Y, Shiota T, Suzuki T, Miyazaki R, Sakurada H, Lithgow T, Dohmae N, Mori H, *Tsukazaki T, *Narita S and *Akiyama Y. The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery (BAM) complex. Molecular Microbiology  in press
  • Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, *Nureki O and *Tsukazaki T. Crystal Structures of SecYEG in Lipidic Cubic Phase Elucidate a Precise Resting and a Peptide-Bound State. Cell Reports 13(8):1561-1568 (2015)
  • Shimokawa-Chiba N, Kumazaki K, Tsukazaki T, Nureki O, Ito K and *Chiba S.Hydrophilic microenvironment required for the channel-independent insertase function of YidC protein. Proc Natl Acad Sci USA. 112(6):5063-5068 (2015)
  • ●Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, *Tsukazaki T and *Nureki O. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep. 4:7299 (2014)
  • Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, *Tsukazaki T and *Nureki O. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509(7501): 516-20 (2014)
  • ●Mio K, Tsukazaki T, Mori H, Kawata M, Moriya T, Sasaki Y, Ishitani R, Ito K, *Nureki O and *Sato C. Conformational variation of the translocon enhancing chaperone SecDF. J Struct Funct Genomics (3): 107-15
  • Tanaka Y, Hipolito CJ, Maturana AD, Ito K, Kuroda T, Higuchi T, Katoh T, Kato HE, Hattori M, Kumazaki K, Tsukazaki T, Ishitani R, *Suga H and *Nureki O. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature, 496:247-251(2013)
  • Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, Newstead S, *Ishitani R and *Nureki O. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci USA, 110:11343-11348(2013)
  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, *Deisseroth K and *Nureki O. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482(7385): 369-74 (2012)

A02 Team Homma

Michio Homma
  • ●Takekawa N, Terahara N, Kato T, Gohara M, Mayanagi K, Hijikata A, Onoue Y, Kojima S, Shirai T, Namba K, Homma M. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium. Sci Rep 6:31526. doi: 10.1038/srep31526. (2016)
  • Nishikino T, Zhu S1, Takekawa N, Kojima S, Onoue Y and Homma M. Serine suppresses the motor function of a periplasmic PomB mutation in the Vibrio flagella stator. Microbiologyopen doi: 10.1111/gtc.12357 (2016)
  • Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M and Keiichi Namba K. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. Microbiologyopen doi:10.1002/mbo3.340 (2016)
  • ●Nishiyama S, Takahashi Y, Yamamoto K, Suzuki D, Itoh Y, Sumita K, Uchida Y, Homma M, Imada K, Kawagishi I. Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants. Sci Rep 6:20866 (2016)
  • ●Ishii E, Chiba S, Hashimoto N, Kojima S, Homma M, Ito K, Akiyama Y and *Mori H. Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria. PNAS 112(40):E5513-5522 (2015)
  • ●Takekawa N, Nishiyama M, Kaneseki T, Kanai T, Atomi H, Kojima S and *Homma M. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium. Scientific Reports 5 12711(2015)
  • Onoue Y, Kojima S and *Homma M. Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation. J. Biochem. doi:10.1093/jb/mvv068  (2015)
  • Ono H, Takashima A, Hirata H, *Homma M and *Kojima S. The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus. Mol. Microbiol. 98(1):130-141   (2015)
  • Zhu S, Kumar A, Kojima S and *Homma M. FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio. Mol. Microbiol. 98(1):101-110   (2015)
  • Nishino Y, Onoue Y, Kojima S and *Homma M. Functional chimeras of flagellar stator proteins between E. coliem> MotB and Vibrio PomB at the periplasmic region in Vibrio or E. coli. MicrobiologyOpen. 4(2):323-331   (2015)
  • Ogawa R, Abe-Yoshizumi R, Kishi T, Homma M and *Kojima S. Interaction of the C-Terminal Tail of FliF with FliG from the Na+-Driven Flagellar Motor of Vibrio alginolyticus. J Bacteriol. 197(1):63-72   (2015)
  • ●Zhu S, Takao M, Li N, Sakuma M, Nishino Y, Homma M, *Kojima S and *Imada K. Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc Natl Acad Sci U S A. 111(37):13523-13528   (2014)
  • Takekawa N, Kojima S and *Homma M. Contribution of Many Charged Residues at the Stator-Rotor Interface of the Na+-Driven Flagellar Motor to Torque Generation in Vibrio alginolyticus. J Bacteriol. 196(7):1377-1385   (2014)
  • Onoue Y, Abe-Yoshizumi R, Gohara M, Kobayashi S, Nishioka N, Kojima S and *Homma M. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor. J Biochem. 155(3):207-216   (2014)
  • Gohara M, Kobayashi S, Abe-Yoshizumi , Nonoyama N, Kojima S, Asami Y, and *Homma M. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+ driven flagellar motor. J Biochem 155(2):83-89   (2014)
  • Zhu S, Kojima S and *Homma M. Structure, gene regulation and environmental response of flagella in Vibrio . Front Microbiol. 4(410): doi:10.3389/fmicb.2013.00410   (2013)
  • Takekawa N, Kojima S, and Homma M. Fluorescence imaging of GFP-fused periplasmic components of Na+-driven flagellar motor using Tat pathway in Vibrio alginolyticus. J Biochem , 153(6):547-53(2013)
  • Terashima H, Terauchi T, Ihara K, Nishioka N, Kojima S and Homma M. Mutation in the a-subunit of F1FO-ATPase causes an increased motility phenotype through the sodium-driven flagella of Vibrio. J Biochem , 154(2):177-84(2013)
  • ●Takekawa N, Terauchi T, Morimoto YV, Minamino T, Lo CJ, Kojima S and Homma M. Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. J Biochem , 153(5):441-51(2013)
  • ●Terashima H, Li N, Sakuma M, Koike M, Kojima S, Homma M and Imada K. Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT. Proc Natl Acad Sci USA , 110(15):6133-8(2013)
  • Abe-Yoshizumi R, Kobayashi S, Gohara M, Hayashi K, Kojima C, Kojima S, Sudo Y, Asami Y and Homma M. Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na+ driven flagellar motor. Species. BIOPHYSICS, 9:21-9(2013)
  • Zhu S, Homma M, and Kojima S. Intragenic Suppressor of a Plug Deletion Nonmotility Mutation in PotB, a Chimeric Stator Protein of Sodium-Driven Flagella. J Bacteriol , 194(24):6728-35(2012)
  • Nishiyama S, Suzuki D, Itoh Y, Suzuki K, Tajima, Hyakutake A, Homma M, Butler-Wu S, Camilli A and Kawagishi I. Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids. INFECTION AND IMMUNITY, 80(9):3170-8(2012)
  • Kawano-Kawada M, Iwaki T, Hosaka T, Murata T, Yamato I, Homma M, and Kakinuma Y. Mutagenesis of the residues forming an ion binding pocket of the NtpK subunit of Enterococcus hirae V-ATPase. J Bacteriol, 194(17):4546-9(2012)
  • Inoue K, Reissig L, Sakai M, Kobayashi S, Homma M, Fujii M, Kandori H and Sudo Y. Absorption Spectra and Photochemical Reactions in a Unique Photoactive Protein, middle Rhodopsin MR. J Phys Chem B, 116(20):5888-99(2012)
  • Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma M and Fukuda T. Nanofork for Single Cells Adhesion Measurement via ESEM-Nanomanipulator System. IEEE Trans Nanobioscience, 11(1):70-8(2012)
  • Takekawa N, Li N, Kojima S and Homma M. Characterization of PomA mutants defective in the functional assembly of the Na+ -driven flagellar motor in Vibrio alginolyticus. J Bacteriol, 194(8):1934-9 (2012)
Takayuki Kato
  • Zhang W-J, Santini C-L, Bernadac A, Ruan J, Zhang S-D, Kato T, Li Y, Namba K and *Wu L-F. Complex Spatial Organization and Flagellin Composition of Flagellar Propeller from Marine Magnetotactic Ovoid Strain MO-1. J Mol Biol 416: 558-570 (2012)
  • Fujii T, Cheung M, Blanco A, Kato T, *Blocker A J and *Namba K. The structure of a type III secretion needle at 7-Å resolution provides insights into its assembly and signaling mechanisms. Proc Natl Acad Sci USA, 109: 4461-4466 (2012)
  • Ruan J, Kato T, Santini C-L, Miyata T, Kawamoto A, Zhang W-J, Bernadac A, Wu L-F and *Namba K. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. Proc Natl Acad Sci USA 109(50), 20643-20648 (2012)
Seiji Kojima
  • *Kojima S. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr. Opin. Microbiol. 28:66-71  (2015)
  • Nishiyama M and Kojima S. Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy. Int J Mol Sci, 13:9225-9239(2012)
Tohru Minamino
  • ●Terahara N, Kodera N, Uchihashi T, Ando T, Namba K* and Minamino T*.Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor Science Advances 3(11): eaao4119 (2017)
  • Fujii T, Kato T, Hiraoka KD, Miyata T, Minamino T, Chevance F, Hughes KT, *Namba K. Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook. Nat. Commun. 8: 14276 (2017)
  • Renault TT, Abraham AO, Bergmiller T, Paradis G, Rainville S, Charpentier E, Guet CC, *Tu Y, *Namba K, *Keener JP, *Minamino T, *Erhardt M. Bacterial flagella grow through an injection-diffusion mechanism. eLife 6: e23136 (2017)
  • ●Hiraoka KD, Morimoto YV, Inoue Y, Fujii T, Miyata T, Makino F, *Minamino T, *Namba K. Straight and rigid flagellar hook made by insertion of the FlgG specific sequence into FlgE. Sci. Rep. 7: 46723 (2017)
  • Pourjaberi SNS, Terahara N, Namba K and *Minamino T. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Mol. Microbiol. (DOI: 10.1111/mmi.13843)
  • ●Fukumura T, Makino F, Dietsche T, Kinoshita M, Kato T, Wagner S, *Namba K, *Imada K, Minamino T. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLOS Biol. 15(8): e2002281 (2017)
  • ●Terahara N, Noguchi Y, Nakamura S, Kami-ike N, Ito M, *Namba K,*Minamino T. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor Scientific Reports 7: 46081 (2017)
  • Morimoto YV, Kami-ike N, Miyata T, Kawamoto A, Kato T, *Nambaa K, *Minamino T. High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences mBIO 7(6): e01911-16 (2016)
  • Furukawa Y, Inoue Y, Sakaguchi A, Mori Y, Fukumura T, Miyata T, *Namba K, *Minamino T. Structural stability of flagellin subunits affects the rate of flagellin export in the absence of FliS chaperone. Mol. Microbiol. In press.
  • †Kinoshita M, †Nakanishi Y, Furukawa Y, Namba K, *Imada K, *Minamino T. Rearrangements of α-helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export. Mol. Microbiol. 101: 656–670 (2016).
  • †*Imada K, †Minamino T, Uchida Y, Kinoshita M, Namba K. Insight into the flagellar type III protein export revealed by the complex structure of the type III ATPase and its regulator. Proc. Natl. Acad. Sci. USA 113: 3633–3638 (2016).
  • *Minamino T, Morimoto YV, Hara N, Aldridge PD, *Namba K. The bacterial flagellar type III export gate complex is a dual fuel engine that can use both H+ and Na+ for flagellar protein export. PLoS Pathog. 12: e1005495 (2016).
  • *Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M, *Namba K. FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella. MicrobiologyOpen 5: 424–435 (2016).
  • *McMurry JL, Minamino T, Furukawa Y, Francis JW, Hill SA, Helms KA, Namba K. Weak interactions between Salmonella enterica FlhB and other flagellar export apparatus proteins govern type III secretion dynamics. PLoS One 10: e0134884 (2015).
  • *Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, *Namba K. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci. Rep. 4: 7579 (2014)
  • †Bai F, †Morimoto YV, Yoshimura SDJ, Hara N, Kami-ike N, *Namba K, *Minamino T. Assembly dynamics and the roles of FliI ATPase of the flagellar export apparatus. Sci. Rep. 4: 6528 (2014).
  • Fukumura T, Furukawa Y, Kawaguchi T, Saijo-Hamano Y, Namba K, *Imada K, *Minamino T. Crystallization and preliminary X-ray analysis of the periplasmic domain of FliP, an integral membrane component of the bacterial flagellar type III protein export apparatus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. F70: 1215–1218 (2014).
  • ●*Nakamura S, Minamino T, Kami-ike N, Kudo S, *Namba K. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics 10: 34–41 (2014).
  • Morimoto YV, Ito M, Hiraoka KD, Che YS, Bai F, Kami-ike N, *Namba K, *Minamino T. Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol. Microbiol. 91: 1214–1226 (2014).
  • Kinoshita M, Hara N, Imada K, *Namba K, *Minamino T. Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contributes to co-ordinating assembly of the flagellar filament. Mol. Microbiol. 90: 1249–1261 (2013).
  • Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, *Namba K. Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3: 3369 (2013).
  • ●*Bai F, Che YS, Kami-ike N, Ma Q, Minamino T, *Sowa Y, *Namba K. Populational heterogeneity vs. temporal fluctuation in Escherichia coli flagellar motor switching. Biophys. J. 105: 2123–2129 (2013).
  • Moriya N, *Minamino T, Ferris HU, Morimoto YV, Ashihara M, Kato T, Namba K. Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function. Biophysics 9: 63–72 (2013).
  • Kishikawa J, Ibuki T, Nakamura S, Nakanishi A, Minamino T, Miyata T, Namba K, Konno H, Ueno H, *Imada K, *Yokoyama K. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One 8: e64695 (2013).
  • ●Takekawa N, Terauchi T, Morimoto YV, Minamino T, Lo CJ, Kojima S, *Homma M. Na+ conductivity of Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. J. Biochem. 153: 441–451 (2013).
  • ●Che Y-S, Nakamura S, Morimoto Y V, Kami-ike N, *Namba K and *Minamino T. Load-sensitive coupling of proton translocation and torque generation in bacterial flagellar motor rotation. Mol Microbiol, 91: 175-184 (2014)
  • ●Castillo D J, Nakamura S, Morimoto Y V, Che Y-S, Kami-ike N, Kudo S, *Minamino T and *Namba K. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. BIOPHYSICS, 9: 173-181 (2013)
  • *Minamino T, Kinoshita M, Imada K and Namba K. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Molecular Microbiology, 83: 168-178 (2012)
  • Shimada M, Saijo-Hamano Y, Furukawa Y, Minamino T, *Imada K and *Namba K. Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus. J Mol Biol, 415: 855-865 (2012)
  • *Minamino T, Kinoshita M, Hara N, Takeuchi S, Hida A, Koya S, Glenwright H, Imada K, Aldridge PD and Namba K. Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Mol Microbiol 83:775-788 (2012)
  • Bai F, Minamino T, Wu A, *Namba K and *Xing J. Coupling between switching regulation and torque generation in bacterial flagellar motor. Phys Rev Lett 108: 178105 (2012)
  • ●Hara N, Morimoto V Y, Kawamoto A, Namba K and *Minamino T. Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export. J Bacteriol 194: 5353-5360 (2012)
  • Monjarás F J, Garcia-Gómez E, Espinosa N, Minamino T, Namba K and *González-Pedrajo, B. Role of EscP(Orf16) in Injectisome Biogenesis and Regulation of Type III Protein Secretion in Enteropathogenic Escherichia coli. J Bacteriol 194: 6029-6045 (2012)
  • Uchida Y, Minamino T, Namba K and *Imada K. Crystallization and preliminary X-ray analysis of the FliH-FliI complex responsible for bacterial flagellar type III protein export. Acta Cryst F68: 1311-1314 (2012)
  • Ibuki T, Uchida Y, Hironaka Y, Namba K, Imada K and *Minamino T. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol 195(3):466-73 (2013)
  • Morimoto YV, Nakamura S, Hiraoka KD, Namba K, and *Minamino T. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J Bacteriol 195(3):474-81 (2013)
  • ●Martinez-Argudo I, Veenendaal A K J, Liu X, Roehrich A D, Roneseen M C, Franzoni G, van Rietschoten K N, Morimoto Y V, Saijo-Hamano Y, Avison M B, Studholme D J, Namba K, Minamino T and *Blocker A J. Isolation of Salmonella mutants resistant to the inhibitory effect of salicylidene acylhydrazides on flagella-mediated motility. PLoS One 8(1):e52179 (2013)
  • Review article
  • *Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol. 23: 267–274 (2015).
  • *Minamino T. Protein export through the bacterial flagellar type III export pathway. Biochim. Biophys. Acta. 1843: 1642–1648 (2014).
  • Morimoto YV, *Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 4: 217–234 (2014).

  • Minamino T, Kato T, Miyata T, *Namba K. Electron microscopy of motor structure and possible mechanisms. Encyclopedia of Biophysics (Gordon C. K. Roberts, ed.) p591–596. Springer (2013)
  • Morimoto YV, *Minamino T. Assembly and Activation of the MotA/B Proton Channel Complex of the Proton-Driven Flagellar Motor of Salmonella enterica, Salmonella - Distribution, Adaptation, Control Measures and Molecular Technologies. (Bassam A. Annous and Joshua B. Gurtler, ed.) p391–404. InTech (2012).
Chojiro Kojima
  • Hattori Y, Furuita K, Ohki I, Ikegami T, Fukada H, Shirakawa M, Fujiwara T and Kojima C. Utilization of lysine 13C-methylation NMR for protein-protein interaction studies. Journal of Biomolecular NMR, 55(1):19-31 (2013)
  • Kawasaki K, Kanaba T, Yoneyama M, Murata-Kamiya N, Kojima C, Ito Y, Kamiya H and Mishima M.Insights into substrate recognition by the Escherichia coli Orf135 protein through its solution structure. Biochem Biophys Res Commun, 420(2):263-8(2012)
  • Kawahara I, Haruta K, Ashihara Y, Yamanaka D, Kuriyama M, Toki N, Kondo Y, Teruya K, Ishikawa J, Furuta H, Ikawa Y, Kojima C and Tanaka Y. Site-specific isotope labeling of long RNA for structural and mechanistic studies. Nucleic Acids Res,. 40(1):e7 (2012)
  • Kawasaki K, Yoneyama M, Murata-Kamiya N, Harashima H, Kojima C, Ito Y, Kamiya H and Mishima M. ¹H, ¹³C and ¹⁵N NMR assignments of the Escherichia coli Orf135 protein. Biomol NMR Assign, 6(1):1-4 (2012)
Hideki Kandori
  • Doki S, Kato HE, N. Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, *Newstead S*, *Ishitani R and *Nureki O. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci U S A, 110: 11343-8 (2013)
  • Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K and *Kandori H. A light-driven sodium ion pump in marine bacteria. Nature Commun 4:1678(2013)

A02 Team Ito

Masahiro Ito
  • ●Terahara N, Noguchi Y, Nakamura S, Kami-ike N, Ito M, *Namba K,*Minamino T. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor Scientific Reports 7: 46081 (2017)
  • Imazawa R, Takahashi Y, Aoki W, Sano M and *Ito M, A novel type bacterial flagellar motor that can use divalent cations as a coupling ion. Scientific Reports, 6:e19773 (2016)
  • Fujinami S, Takeda-Yano K, Onodera T, Satoh K, Shimizu T, Wakabayashi Y, Narumi I, Nakamura A and *Ito M, Draft Genome Sequence of Methylobacterium sp. ME121, isolated from soil as a mixed single colony with Kaistia sp. 32K. Genome Announcements, 3(5):e01005-15 (2015)
  • DeCaen PG, Takahashi Y, Krulwich TA, Ito M, *Clapham DE. Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus species of bacteria. eLife, 3:e04387 (2014)
  • Fujinami S, Takeda-Yano K, Onodera T, Satoh K, Sano M, Takahashi Y, Narumi I, and *Ito M. Draft Genome Sequence of Calcium-dependent Paenibacillus sp. Strain TCA20, Isolated from a Hot Spring Containing a High Concentration of Calcium Ions. Genome Announcements, 2(5):e00866-14 (2014)
  • Ito M and Barquera B. Binding, Transport and Storage of Metal Ions in Biological Cells. CHAPTER 2 Sodium. Its Role in Bacterial Metabolism pp6-41 Royal Society of Chemistry (RSC) (2014)
  • Fujinami S, Takeda K, Onodera T, Satoh K, Sano M, Narumi I and *Ito M. Draft Genome Sequence of Potassium-Dependent Alkaliphilic Bacillus sp. Strain TS-2 isolated from a jumping spider.Genome Announc, 2(3): pii: e00458-14 (2014)
  • Takahashi Y, Koyama K and *Ito M. Suppressor mutants from MotB-D24E and MotS-D30E in the flagellar stator complex of Bacillus subtilis.J Gen Appl Microbiol, (2014) In press
  • Takahashi Y and *Ito M. Mutational analysis of charged residues in the cytoplasmic loops of MotA and MotP in the Bacillus subtilis flagellar motor.J Biochem, pii: mvu030. (2014)
  • Morino M, Suzuki T, Ito M and Krulwich T.A. Purification and functional reconstitution of a seven-subunit mrp-type Na+/H+ antiporter. J Bacteriol, 196(1): 28-35 (2014)
  • Krulwich T.A. and Ito M. Prokaryotic Alkaliphiles; Prokaryotes : Prokaryotic Communities and Ecophysiology, 4th edition: 441-470, Springer (2013)
  • Fujinami S, Takeda K, Onodera T, Satoh K, Sano M, Narumi I and Ito M. Genome Sequence of Sodium-Independent Alkaliphilic Microbacterium sp. Strain TS-1. Genome Announc, 1(6): e01043-13 (2013)
  • Terahara N, Sano M and *Ito M. A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+ , PLOS ONE, 7(9): e46248 (2012)
  • Morino M and *Ito M. Functional expression of the multi-subunit type calcium/proton antiporter from Thermomicrobium roseum, FEMS Microbiology Letters, 335(1): 26-30, (2012)
Katsumi Imada
  • ●Ibuki T, Uchida Y, Hironaka Y, Namba K, *Imada K and Minamino T. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol, 195(3):466-73 doi: 10.1128/JB.01711-12 (2013)
  • Terashima H, Li N, Sakuma M, Koike M, Kojima S, Homma M and *Imada K. Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT. Proc Natl Acad Sci U S A, 110(15):6133-8 doi: 10.1073/pnas.1222655110 (2013)
  • Takei T, Hasegawa K, Imada K, Namba K, Tsumoto K, Kuriki Y, Yoshino M, Yazaki K, Kojima S, Takei T, Ueda T and Miura K. Effects of chain length of an amphipathic polypeptide carrying the repeated amino acid sequence (LETLAKA)(n) on α-helix and fibrous assembly formation. Biochemistry, 52(16):2810-20 doi: 10.1021/bi400001c (2013)
  • Saijo-Hamano Y, Matsunami H, Namba K and *Imada K. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a core fragment of FlgG, a bacterial flagellar rod protein. Acta Crystallogr Sect F Struct Biol Cryst Commun, 69(Pt 5):547-50 doi: 10.1107/S1744309113008075 (2013)
  • Matsutani M, Shirakihara Y, Imada K, Yakushi T and Matsushita K. Draft Genome Sequence of a Thermophilic Member of the Bacillaceae, Anoxybacillus flavithermus Strain Kn10, Isolated from the Kan-nawa Hot Spring in Japan. Genome Announc, 1(3) pii: e00311-13 doi: 10.1128/genomeA.00311-13 (2013)
  • Kishikawa J, Ibuki T, Nakamura S, Nakanishi A, Minamino T, Miyata T, Namba K, Konno H, Ueno H, *Imada K and Yokoyama K. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One, 8(5) : e64695 doi: 10.1371/journal.pone.0064695 (2013)
  • ●Sakuma M, Imada K, Okumura Y, Uchiya K, Yamashita N, Ogawa K, Hijikata A, Shirai T, Homma M and Nikai T. X-ray structure analysis and characterization of AFUEI, an elastase inhibitor from Aspergillus fumigatus. J Biol Chem, 288(24) :17451-9. doi: 10.1074/jbc.M112.433987 (2013)
  • Watanabe TM, Imada K, Yoshizawa K, Nishiyama M, Kato C, Abe F, Morikawa TJ, Kinoshita M, Fujita H and Yanagida T. Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure. PLoS One, 8(8) :e73212. doi: 10.1371/journal.pone.0073212 (2013)
  • ●Kinoshita M, Hara N, Imada K, Namba K, Minamino T. Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament.. Mol Microbiol, 90(6) :1249-61. doi: 10.1111/mmi.12430 (2013)
  • *Minamino T, Kinoshita M, Imada K and Namba K. Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Mol Micorbiol, 83:168-178 (2012)
  • ●Shimada M, Saijo-Hamano Y, Furukawa Y, Minamino T, *Imada K and *Namba K. Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus. J Mol Biol, 425:855-865 (2012)
  • *Minamino T, Kinoshita M, Hara N, Takeuchi S, Hida A, Koya S, Glenwright H, Imada K, Aldridge PD and Namba K. Interaction of a flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Mol Micorbiol, 83:775-788 (2012)
  • Matsunami H, *Samatey FA, Nagashima S, Imada K and *Namba K. Crystallization and preliminary X-ray analysis of FlgA, a Periplasmic protein essential for flagellar P-ring assembly. Acta Cryst. F68:310-313 (2012)
  • Valencia SJ, Bitou K, Ishii K, Murakami R, Morishita M, Onai K, Furukawa Y, Imada K, Namba K and *Ishiura M. Phase-dependent generation and transmission of time information by the KaiABC circadian clock oscillator through SasA-KaiC interaction in cyanobacteria. Genes to Cells, 17:398-419 (2012)
  • Murakami R, Mutoh R, Iwase R, Furukawa Y, Imada K, Onai K, Morishita M, Yasui S, Ishii K, Valencia Swain JO, Uzumaki T, Namba K and *Ishiura M. The roles of the dimeric and tetrameric structures of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria. J Biol Chem, 287:29506-29515 (2012)
  • ●Uchida Y, Minamino T, Namba K and *Imada K. Crystallization and preliminary X-ray analysis of the FliH–FliI complex responsible for bacterial flagellar type III protein export. Acta Cryst. F68:1311-1314 (2012)
  • ●*Imada K, Minamino T and Namba K. The flagellar type II protein export apparatus and F/V type ATPases share a common architecture. SPring-8 Research Frontier 2011 24-25 (2012)

A03 Team Nakayama

Koji Nakayama
  • Gorasia DG, Veith PD, Hanssen EG, Glew MD, Sato K, Yukitake H, Nakayama K, and *Reynolds EC. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System. PLoS Pathog, 12(8):e1005820 (2016) 
  • Xu Q, Shoji M, Shibata S, Naito M, Sato K, Elsliger MA, Grant JC, Axelrod HL, Chiu HJ, Farr CL, Jaroszewski L, Knuth MW, Deacon AM, Godzik A, Lesley SA, Curtis MA, *Nakayama K and *Wilson IA. A distinct type of pilus from the human microbiome. Cell, 165(3):690-703¸ (2016)
  • Kadowaki T, Yukitake H, Naito M, Sato K, Kikuchi Y, Kondo Y, Shoji M and *Nakayama K. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor. Sci Rep, 6:23288¸ (2016)
  • Shoji M and *Nakayama K. Glycobiology of the oral pathogen Porphyromonas gingivalis and related speciesr. Microb Pathog, 94:35-41 (2016)
  • *Naito M, Ogura Y, Itoh T, Shoji M, Okamoto M, Hayashi T and Nakayama K. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identity of a novel Prevotella-lineage specific repeat. DNA Res, 23(1):11-19¸ (2016)
  • Kita D, Shibata S, Kikuchi Y, Kokubu E, Nakayama K, Saito A and *Ishihara K. Involvement of the Type IX Secretion System in Capnocytophaga ochracea Gliding Motility and Biofilm Formation. Appl Environ Microbiol, 82(6):1756-66 (2016)
  • Taguchi Y, Sato K, Yukitake H, Inoue T, Nakayama M, Naito M, Kondo Y, Kano K, Hoshino T, Nakayama K, Takashiba S and *Ohara N. Involvement of an Skp-like protein, PGN_0300, in the type IX secretion system of Porphyromonas gingivalis. Infect Immun, 84(1):230-240 (2015)
  • Nakayama M, Inoue T, Naito M, Nakayama K and *Ohara N. Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp. J Biol Chem, 290(8):5190-202 (2015)
  • Onozawa S, Kikuchi Y, Shibayama K, Kokubu E, Nakayama M, Inoue T, Nakano K, Shibata Y, Ohara N, Nakayama K, Ishihara K, Kawakami T and *Hasegawa H. Role of extracytoplasmic function sigma factors in biofilm formation of Porphyromonas gingivalis. BMC Oral Health, 15:4 (2015)
  • *Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res, 50(1):1-8 (2015)
  • Fujita Y, Nakayama M, Naito M, Yamachika E, Inoue T, Nakayama K,Iida S and *Ohara N. Hemoglobin receptor protein from Porphyromonas gingivalis induces interleukin-8 production in human gingival epithelial cells through stimulation of the mitogen-activated protein kinase and NF-κB signal transduction pathways. Infect Immun, 82(1):202-211 (2015)
  • Ohara-Nemoto Y, Rouf SM, Naito M, Yanase A, Tetsuo F, Ono T, Kobayakawa T, Shimoyama Y, Kimura S, Nakayama K, Saiki K, Konishi K and *Nemoto TK. Identification and characterization of prokaryotic dipeptidyl-peptidase 5 from Porphyromonas gingivalis. J Biol Chem, 289(9):5436-5448 (2015)
  • Nonaka M, Shoji M, Kadowaki T, Sato K, Yukitake H, Naito M and *Nakayama K. Analysis of a Lys-specific serine endopeptidase secreted via the type IX secretion system in Porphyromonas gingivalis. FEMS Microbiol Lett, 354:60-68 (2014)
  • *Shoji M, Sato K, Yukitake H, Naito M and Nakayama K. Involvement of the Wbp pathway in the biosynthesis of Porphyromonas gingivalis lipopolysaccharide with anionic polysaccharide. Sci Rep, 4:5056 (2014)
  • Narita Y, Sato K, Yukitake H, Shoji M, Nakane D, Nagano K, Yoshimura F, Naito M and *Nakayama K. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system. Microbiology-SGM, 160(10):2295-2303 (2014)
  • Tagawa J, Inoue T, Naito M, Sato K, Kuwahara T, Nakayama M, Nakayama K, Yamashiro T and *Ohara N. Development of a novel plasmid vector pTIO-1 adapted for electrotransformation of Porphyromonas gingivalis. J Microbiol Methods, 105:174-9 (2014)
  • Sato K, Yukitake H, Narita Y, Shoji M, Naito M and *Nakayama K. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system. FEMS Microbiol Lett, 338(1): 68-76¸ (2013)
  • Nakane D, Sato K, Wada H, *McBride MJ, *Nakayama K. Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci USA, 110(27): 11145-11150¸ (2013)
  • Shoji M, Yukitake H, Sato K,Shibata Y, Naito M, Aduse-Opoku J, Abiko Y, Curtis MA, and Nakayama K. Identification of an O-antigen chain length regulator, WzzP, in Porphyromonas gingivalis. MicrobiologyOpen, 2(3): 383-401¸ (2013)
  • Ohara-Nemoto Y, Rouf SM, Naito M, Yanase A, Tetsuo F, Ono T, Kobayakawa T, Shimoyama Y, Kimura S, Nakayama K, Saiki K, Konishi K and Nemoto TK. Identification and characterization of prokaryotic dipeptidyl-peptidase 5 from Porphyromonas gingivalis. J Biol Chem, 289(9): 5436-5448¸ (2013)
  • *Sakai E, Shimada-Sugawara M, Nishishita K, Fukuma Y, Naito M, Okamoto K, Nakayama K and Tsukuba T. Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis. J Cell Biochem, 113: 486-498 (2012).

A03 Team Fukumori

Yoshihiro Fukumori
  • Oestreicher Z, Taoka A, and *Fukumori Y. A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron, 72:8-14 (2015)
  • Taoka A, Kondo J, Oestreicher Z and *Fukumori Y. Characterization of uncultured giant rod-shaped magnetotactic Gammaproteobacteria from a freshwater pond in Kanazawa, Japan. Microbiology, 160:no. Pt 10 2226-2234(2014)
  • Taoka A, Eguchi Y, Mise S, Oestreicher Z, Uno F, and *Fukumori Y. A magnetosome-associated cytochrome MamP is critical for magnetite crystal growth during the exponential growth phase. FEMS Microbiology Letters, 358: 21-29
  • Numoto N, Nakagawa T, Ohara R, Hasegawa T, Kita A, Yoshida T, Maruyama T, Imai K, Fukumori Y and Miki K. The structure of a deoxygenated 400 kDa hemoglobin reveals ternary and quaternary structural changes of giant hemoglobins. Accepted for publication in Acta Crystallographica, D70: 1823-1831 (2014)
  • Sato N, Ishii S, Sugimoto H, Hino T, Fukumori Y, Sako Y, Shiro Y, Tosha T. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Proteins, Article first published online: 15 JAN 2014, doi: 10.1002/prot.24492.
  • Noguchi A, Ikeda A, Mezaki M, Fukumori Y, and *Kanemori M. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP. J Bacteriol, 196(9):1694-1703(2014)
  • Sakaguchi S, Taoka A and *Fukumori Y. Analysis of magnetotactic behavior by swimming assay. Biosci Biotech and Biochem, 77: 940-947 (2013)
  • Yamanaka M, Ishizaki Y, Nakagawa T, Taoka A and Fukumori Y. Purification and characterization of coacervate-forming cuticular proteins from Papilio xuthus Pupae. Zoological Sci, 30: 534-542 (2013)
  • Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T and *Fukumori Y. Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM. J Mol Biol, 422:300-309(2012)
  • Suzuki H, Ikeda A, Tsuchimoto S, Adachi K, Noguchi A, Fukumori Y and *Kanemori M. Synergistic binding of DnaJ and DnaK chaperone to the heat shock transcription factor σ32 assures its characteristic high metabolic instability: Implications for the heat shock protein 70 (Hsp70)-Hsp40 mode of function. J Biol Chem, 287:19275-19283(2012)

A03 Team Uyeda

Taro Q.P. Uyeda
  • Shen Y, Cheng Y, Uyeda TQP and Plaza GR. Cell mechanosensors and the possibilities of using magnetic nanoparticles to study them and to modify cell fate. Ann Biomed Eng in press.
  • Nagasaki A, Kijima S, Yumoto T, Imaizumi M, Yamagishi A, Kim H, Nakamura C, and Uyeda TQP. The position of the GFP tag on actin affects the filament formation in mammalian cells. Cell Struct Func, in press.
  • Hirakawa R, Nishikawa Y, Uyeda TQP and Tokuraku K. Unidirectional growth of heavy meromyosin (HMM) clusters along actin filaments revealed by real-time fluorescence microscopy. Cytoskeleton, in press.
  • Iwase K, Tanaka M, Hirose K, Uyeda TQP and Honda H. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin. PLoS One 12:e0181171 (2017)
  • Shen, Y, Wu, C, Uyeda TQP, *Plaza GR, Liu B, Han Y, Lesniak MS. and *Cheng Y. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field. Theranostics, 7:1735-1748 (2017)
  • Uyeda TQP. Role of dynamic and cooperative conformational changes in actin filaments. In Muscle Contraction and Cell Motility (Sugi H, Ed). 415–444 (2016)
  • Shibata K, Nagasaki A, Adachi H, Uyeda TQP. Actin binding domain of filamin distinguishes posterior from anterior actin filaments in migrating Dictyostelium cells. Biophys. Physicobiol., 13:321-331 (2016)
  • Huang S, Umemoto R, Tamura Y, Kofuku Y, Uyeda TQP, Nishida N, and Shimada I. Structure determination of an actin-binding protein in complex with G-actin using paramagnetic relaxation enhancement-derived distance constraints. Sci. Reports, 6:33960 (2016)
  • ●Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H, Furutani-Umezu N, Nakajima J, Noguchi TQP, Nagasaki A, Tokuraku K, Uyeda TQP. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci. Reports, 6:35449 (2016)
  • *Umeki, N., Hirose, K. and Uyeda TQP. Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein. Sci. Reports, 6 :20406 (2016)
  • Kijima ST, Hirose K, Kong SG, Wada M and *Uyeda TQP. Distinct biochemical properties of Arabidopsis thaliana actin isoforms. Plant Cell Physiol 57(1):46-56 (2016) 
  • *Plaza GR, *Uyeda TQP, Mirzaei Z and Simmons CA. Study of the influence of actin-binding proteins using linear analyses of cell deformability. Soft Matter, 11(27):5435-5446 (2015) 
  • *Noguchi TQP, Morimatsu M, Iwane AH, Yanagida T and Uyeda TQP. The Role of Structural Dynamics of Actin in Class-Specific Myosin Motility. PLoS One, 10(5):e0126262 (2015) 
  • Ohnuki-Nagasaki R, *Nagasaki A, Hakamada K, *Uyeda TQP, Miyake M, Miyake J and Fujita S. Identification of kinases and regulatory protiens required for cell migration using a transfected cell-microarray system. BMC Genomics, 2015 16:9(2015) 
  • ●Ngo KX, *Kodera N, Katayama E, Ando T and *Uyeda TQP. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. eLife, 2015 4:e04806(2015) 
  • ●Gomibuchi Y, Uyeda TQP and Wakabayashi T. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate. Biochem. Biophys. Res., 441:844-848 (2013) 
  • Shiozaki N, Nakano K, Kushida Y, Noguchi TQP, Uyeda TQP, Wloga D, Dave D, Vasudevan KK, Gaertig J and *Numata O. ADF/cofilin is not essential but is crucially important for actin activities during phagocytosis in Tetrahymena thermophila. Eukaryotic Cell, 12(8):1080-6 (2013) 
  • Umeki N, Nakajima J, Noguchi TQP, Tokuraku K, Nagasaki A, Ito K, Hirose K, *Uyeda TQP. Rapid nucleotide exchange renders Asp11 mutant actins resistant to depolymerizing activity of cofilin, leading to dominant toxicity in vivo. J Biol Chem 288(3):1739-49, (2012)
  • ● Noguchi TQP, Komori T, Umeki N, Demizu N, Ito K, Iwane AH, Tokuraku K, Yanagida T and *Uyeda TQP. G146V mutation at the hinge region of actin reveals a myosin class-specific requirement of actin conformations for motility. J Biol Chem 287(29):24339-24345 (2012)
  • *Plaza G and *Uyeda TQP. Contraction velocity of the actomyosin cytoskeleton in the absence of cell membrane. Soft Matter 9(17):4390-4400 (2013)
Kiyotaka Tokuraku
  • Taguchi R, Hatayama K, Takahashi T, Hayashi T, Sato Y, Sato D, Ohta K, Nakano H, Seki C, Endo Y, Tokuraku K and Uwai K. Structure–activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. Eur J Med Chem, 138: 1066-1075 (2017)
  • Hirakawa R, Nishikawa Y, Uyeda TQP and Tokuraku K. Unidirectional growth of heavy meromyosin (HMM) clusters along actin filaments revealed by real-time fluorescence microscopy. Cytoskeleton, in press.
  • ●Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H, Furutani-Umezu N, Nakajima J, Noguchi TQP, Nagasaki A, Tokuraku K, Uyeda TQP. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci. Reports, 6:35449 (2016)
  • Hashi Y, Kotani S and Tokuraku K. Molecular Evolution of a Group of Microtubule-Associated Proteins Sharing Partial Similarities in their Primary Structures. Sci J Kanagawa Univ 26: 1-6 (2015)
  • Inoue D, Mahmot B, Kabir AM, Farhana TI, Tokuraku K, Sada K, Konagaya A and *Kakugo A. Depletion force induced collective motion of microtubules driven by kinesin. Nanoscale, 7(43):180054-180061 (2015)
  • Ogara T, Takahashi T, Yasui H, Uwai K and *Tokuraku K. Evaluation of the effects of amyloid β aggregation from seaweed extracts by a microliter-scale high-throughput screening system with a quantum dot nanoprobe. J Biosci Bioeng. 120(1):45-50 (2014)
  • Ishigaki Y, Tanaka H, Akama H, Ogara T, Uwai K and *Tokuraku K. A microliter-scale high-throughput screening system with quantum-dot nanoprobes for amyloid-β aggregation inhibitors. PLOS ONE, 8(8):e72992 (2013)
  • ●Umeki N, Nakajima J, Noguchi TQP, Tokuraku K, Nagasaki A, Ito K, Hirose K and *Uyeda TQP. Rapid nucleotide exchange renders Asp11 mutant actins resistant to depolymerizing activity of cofilin, leading to dominant toxicity in vivo. J Biol Chem, 288(3):1739-49 (2013)
  • Tokuraku K and *Ikezu T. Imaging of amyloid-β aggregation using a novel quantum dot nanoprobe and its advanced applications. Bionanoimaging, 1st edition, Protein Misfolding & Aggregation, Academic Press: 121-131 (2013)
  • *Nakagawa H, Matsushima K, Iwasaki M, Shimohigashi M, Tokuraku K and Kotani S. Deletion in the Pro-rich Region of Microtubule-associated Protein 4 Influences Its Distribution in Neural Growth Cone. Fukuoka University Science Reports, 43:67-72 (2013)
  • ●Noguchi TQP, Komori T, Umeki N, Demizu N, Ito K, Iwane AH, Tokuraku K, Yanagida T and *Uyeda TQP. G146V mutation at the hinge region of actin reveals a myosin class-specific requirement of actin conformations for motility. J Biol Chem 287(29):24339-24345 (2012)
  • Nakamura R, Kijima S, Kiyoyama S and *Tokuraku K. Functional Assessment of Waste Molten Slag as a Water Preservative. J Japan Soc Material Cycles and Waste Management, 23(1):25-32 (2012)
  • Matsushima K, Tokuraku K, Hasan MR and *Kotani S. Microtubule-associated protein 4 binds to actin filaments and modulates their properties. J Biochem 151(1):99-108 (2012)
Akira Nagasaki
  • Nagasaki A, Kijima S, Yumoto T, Imaizumi M, Yamagishi A, Kim H, Nakamura C, and Uyeda TQP. The position of the GFP tag on actin affects the filament formation in mammalian cells. Cell Struct Func, in press.
  • *Kim H, Yamagishi A, Imaizumi M, Onomura Y, Nagasaki A, Miyagi Y, Okada T and Nakamura C. Quantitative measurements of intercellular adhesion between a macrophage and cancer cells using a cup-attached AFM chip. Colloids Surf B Biointerfaces 155:366-372 (2017)
Taro QP Noguchi
  • ●Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H, Furutani-Umezu N, Nakajima J, Noguchi TQP, Nagasaki A, Tokuraku K, Uyeda TQP. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci. Reports, 6:35449 (2016)
  • *Noguchi TQP, Morimatsu M, Iwane AH, Yanagida T and Uyeda TQP. The Role of Structural Dynamics of Actin in Class-Specific Myosin Motility. PLoS One, 10(5):e0126262 (2015) 

Openly recruited research projects(2015-2016)

A01 Team Arai

Munehito Arai
  • *Arai M, Sugase K, Dyson HJ and *Wright PE. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci USA 112(31):9614-19  (2015)
  • Oikawa H, Kamagata K, Arai M and *Takahashi S. Complexity of the folding transition of the B domain of protein A revealed by the high-speed tracking of single-molecule fluorescence time series. J Phys Chem B 119(20):6081-91  (2015)

A01 Team Nishiyama

Masayoshi Nishiyama
  • *Nishiyama M and Arai Y. Tracking the movement of a single prokaryotic cell at extreme environmental conditions. Methods in Molecular Biology, Springer, accepted
  • Hayashi M, *Nishiyama M, Kazayama Y, Toyota T, Harada Y and *Takiguchi K. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure. Langmuir 32(15):3794-802  (2016)
  • *Nishiyama M. High-Pressure Microscopy for Studying Molecular Motors. High Pressure Bioscience – Basic Concepts, Applications and Frontiers. Subcell Biochem 72:593-611 Springer  (2015)
  • ●Takekawa N, Nishiyama M, Kaneseki T, Kanai T, Atomi H, Kojima S and *Homma M. Sodium-driven energy conversion for flagellar rotation of the earliest diverg ent hyperthermophilic bacterium. Scientific Reports 5 12711(2015)

Chiaki Kato
  • Hamajima Y, Nagae T, Watabane N, Ohmae E, Kato-Yamada Y and Kato C. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Extremophiles. 20(2):177-86 (2016)
  • Ohmae E, Gekko K and Kato C. Environmental adaptation of dihydrofolate reductase from deep-sea bacteria.High Pressure Bioscience– Basic Concepts, Applications and Frontiers. Subcell Biochem. 72:423-42 Springer (2015)
  • Koyama S, Tsubouchi T, Usui K, Uematsu K, Tame A, Nogi Y, Ohta Y, Hatada Y, Kato C, Miwa T, Toyofuku T, Nagahama T, Konishi M, Nagano Y and Abe F. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells. FEMS Yeast Res. 15(6) doi: 10.1093/femsyr/fov064 (2015)
  • Sato H, Nakasone K, Yoshida T, Kato C and Maruyama T. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Extremophiles. 19(4):751-762 (2015)

A01 Team Kamiya

Ritsu Kamiya
  • Yagi T and Kamiya R. Diversity of Chlamydomonas Axonemal Dyneins In Dynein Handbook 2nd ed. (Ed. K. Hirose and L. Amos) Pan Stanford Publishing, in press (2017)
  • Yagi T and Kamiya R. Genetic Approaches to Axonemal Dynein Function in Chlamydomonas and Other Organisms In Dyneins: Structure, Biology and Disease (2nd ed.) (Ed. S. M. King)  Academic Press, in press. (2017)
  • Kamiya R. Axonemal Motility Reference Module in Life Sciences Elsevier  doi:10.1016/B978-0-12-809633-8.08070-5 (2017)
  • Kubo T, Hirono M, Aikawa T, Kamiya R and *Witman GB. Reduced tubulin polyglutamylation suppresses flagellar shortness in Chlamydomonas. Mol Biol Cell. 26(15):2810-2822 (2015)
  • ●Ichikawa M, Saito K, Yanagisawa H, Yagi T, Kamiya R, Yamaguchi S, Yajima J, Kushida Y, Nakano K, Numata O and *Toyoshima YY. Axonemal Dynein Light Chain-1 Locates at the Microtubule Binding Domain of the γ Heavy Chain. Mol Biol Cell. 26(23):4236-4247 (2015)

A01 Team Kenri

Tsuyosi Kenri
  • Yamazaki T and *Kenri T. Epidemiology of Mycoplasma pneumoniae infections in Japan and therapeutic strategies for macrolide-resistant M. pneumoniae. Front Microbiol. 7:693 (2016)
  • ●★Nakane D, Kenri T, Matsuo L and *Miyata M. Systematic structural analyses of attachment organelle in Mycoplasma pneumoniae. PLoS Pathog. 11(12):e1005299 (2015)
  • *Ishiguro N, Koseki N, Kaiho M, Kikuta H, Togashi T, Oba K, Morita K, Nagano N, Nakanishi M, Hazama K, Watanabe T, Sasaki S, Horino A, Kenri T, Ariga T and Hokkaido Pediatric Respiratory Infection Study Group. Regional differences in rates of macrolide-resistant Mycoplasma pneumoniae in Hokkaido, Japan. Jpn J Infect Dis. Jul 10: [Epub ahead of print] (2015)

A02 Team Watanabe

Rikiya Watanabe
  • *Watanabe R, Soga N, Hara M and *Noji H. Arrayed water-in-oil droplet bilayers for membrane transport analysis. Lab on a Chip DOI: 10.1039/C6LC00155F (2016)
  • Li CB, Ueno H, Watanabe R, Noji H and *Komatsuzaki T. ATP hydrolysis assists Phosphate release and promotes reaction ordering in F1-ATPase. Nature Communications : (2015) in press
  • *Watanabe R, Soga N and *Noji H. Novel nano-device to measure voltage-driven membrane transporter activity. IEEE transactions on nanotechnology pp(99) (2015)
  • Soga N, *Watanabe R and *Noji H. Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters. Scientific Reports 5:11025 (2015)

A02 Team Nishikimi

Akihiko Nishikimi
  • *Okumura F, Uematsu K, Byrne SD, Hirano M, Joo-Okumura A, Nishikimi A, Parallel regulation of VHL disease by pVHL-mediated degradation of B-Myb and HIF-α. Mol Cell Biol. 36(12)1803-17 (2015)
  • Ishihara S, Nishikimi A, Umemoto E, Miyasaka M, Saegusa M and *Katagiri K. Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis. Nat Commun. 6:8982 (2015)
Koko Katagiri

A02 Team Sowa

Yoshiyui Sowa
  • Ma Q, Sowa Y, *Baker MA and *Bai F. Bacterial Flagellar Motor Switch in Response to CheY-P Regulation and Motor Structural Alterations. Biophys J. 110(6):1411-1420 (2016)
  • Yamamoto K, Tamai R, Yamazaki M, Inaba, T, Sowa Y and *Kawagishi I. Substrate-dependent dynamics of the multidrug efflux transporter AcrB of Escherichia coli. Sci Rep. 6:21909 (2016)

A03 Team Kato

Kentaro Kato
  • Terkawi MA, Takano R and *Kato K. Isolation and co-cultivation of human macrophages and neutrophils with Plasmodium falciparum-parasitized erythrocytes: an optimized system to study the phagocytic activity to malarial parasites. Parasitol Int, : (2016) in press
  • *Kato K, Murata Y, Horiuchi N, Inomata A, Terkawi MA, Ishiwa A, Ogawa Y, Fukumoto S, Matsuhisa F and Koyama K. Dextran sulfate inhibits acute Toxoplama gondii infection in pigs. Parasit Vectors, 9 : 134 (2016)
  • Murakoshi F, Recuenco FC, Omatsu T, Sano K, Taniguchi S, Masangkay JS, Alviola P, Eres E, Cosico E, Alvarez J, Une Y, Kyuwa S, Sugiura Y and *Kato K. Detection and molecular characterization of Cryptosporidium and Eimeria species in Philippine bats. Parasitol Res, 115 (5):1863-1869 (2016)
  • Murakoshi F, Ichikawa-Seki M, Aita J, Yaita S, Kinami A, Fujimoto K, Nishikawa Y, Murakami S, Horimoto T and *Kato K. Molecular epidemiological analyses of Cryptosporidium parvum virus 1 (CSpV1), a symbiotic virus of Cryptosporidium parvum, in Japan. Virus Res. 211:69-72 (2015)
  • Inomata A, Murakoshi F, Ishiwa A, Takano R, Takemae H, Sugi T, Recuenco FC, Horimoto T and *Kato K. Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion. Sci Rep. 5:11599 (2015)
  • Sugi T, Kawazu SI, Horimoto T and *Kato K. A single mutation in the gatekeeper residue in TgMAPKL-1 restores the inhibitory effect of a bumped kinase inhibitor on the cell cycle. Int J Parasitol Drugs Drug Resist. 5(1):1-8 (2015)

A03 Team Nakamura

Shuichi Nakamura
  • ●☆Takabe K, Kawamoto A, Tahara H, Kudo S, and *Nakamura S. Implications of coordinated cell-body rotations for Leptospira motility. Biochem Biophys Res Commun, 491:1040-1046(2017)
  • ●Terahara N, Noguchi Y, Nakamura S, Kami-ike N, Ito M, *Namba K, and *Minamino T. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor. Sci Rep, 7:46081(2017)
  • Nakamura S and Md Islam S. Motility of spirchetes, Methods in Microbiology 1593, The Bacterial Flagellum, p243–251. Springer (2017)
  • Takabe K, Tahara H, Islam MS, Affroze S, Kudo S, *Nakamura S. Viscosity-dependent variations in the cell shape and swimming manner of Leptospira Microbiology, 163:153-160 (2017)
  • Affroze S, Md. Islam S, Takabe K, Kudo S and *Nakamura S. Characterization of leptospiral chemoreceptors using a microscopic agar drop assay. Curr Microbiol, 73(2): 202-205 (2016)
  • ●Md. Islam S, Morimoto YV, Kudo S and *Nakamura S. H+ and Na+ are involved in flagellar rotation of the spirochete Leptospira. Biochem Biophys Res Commun, 466(2):196-200 (2015)

A03 Team Ito

Koji Ito
  • *Tominaga M and *Ito K. The molecular mechanism and physiological role of cytoplasmic streaming. Curr Opin Plant Biol, 27 : 104–110 (2015)

A03 Team Sugawa

Mitsuhiro Sugawa
  • Yamagishi M, Shigematsu H, Yokoyama T, Kikkawa M, Sugawa M, Aoki M, Shirouzu M, *Yajima J and *Nitta R. Structural Basis of Backwards Motion in Kinesin-1-Kinesin-14 Chimera: Implication for Kinesin-14 Motility. Structure. 24(8):1322-34 (2016)
  • ● *Sugawa M, Okazaki K, Kobayashi M, Matsui T, Hummer G, Masaike T and *Nishizaka T. F1-ATPase conformational cycle from simultaneous single-molecule FRET and rotation measurements. Proc Natl Acad Sci U S A, 113 (21): E2916-E2924 (2016)

A03 Team Wakabayashi

Kenichi Wakabayashi
  • Ueki N, Ide T, Mochiji S, Kobayashi Y, Tokutsu R, Ohnishi N, Yamaguchi K, Shigenobu S, Tanaka K, Minagawa J, Hisabori T, Hirono M, and *Wakabayashi K. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 113 :5299-304 (2016)
  • Wakabayashi K and *Kamiya R. Axonemal motility in Chlamydomonas. Methods Cell Biol, 127 :387-402 (2015)

A03 Team Tashiro

Yosuke Tashiro
  • Monson RE, Tashiro Y and *Salmond GP. Overproduction of individual gas vesicle proteins perturbs flotation, antibiotic production and cell division in the enterobacterium Serratia sp. ATCC39006. Microbiology, in press
  • Suzuki K, Aziz FA, Inuzuka Y, Tashiro Y and *Futamata H. Draft genome sequence of Pseudomonas sp. LAB-08 isolated from trichloroethene contaminated aquifer soil. Genome Announc, 4(5):e00948-16
  • Suzuki K, Owen R, Mork J, Mochihara H, Hosokawa T, Kubota H, Sakamoto H, Matsuda A, Tashiro Y and *Futamata H. Comparison of electrochemical and microbiological characterization of microbial fuel cells equipped with SPEEK and Nafion membrane electrode assemblies. J Biosci Bioeng, 122(3):322-28 (2016)
  • Tashiro Y, Monson RE, Ramsay JP and *Salmond GP. Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria. Environ Microbiol, 18(4):1264-76 (2016)
  • Aziz FA, Suzuki K, Ohtaki A, Sagegami K, Hirai H, Seno J, Mizuno N, Inuzuka Y, Saito Y, Tashiro Y, Hiraishi A and *Futamata H. Interspecies interactions are an integral determinant of microbial community dynamics. Frontiers Microbiol, 6:1148 (2015)
  • Toyofuku M, Tashiro Y, Hasegawa Y, Kurosawa M and *Nomura N. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications. Adv Colloid Interface Sci, 226:65-77 (2015)
  • Hasegawa Y, Futamata H and *Tashiro Y. Complexities of cell-to-cell communication through membrane vesicles: implications for selective interaction of membrane vesicles with microbial cells. Frontiers Microbiol, 6:633 (2015)

A03 Team Goshima

Gohta Goshima
  • Moriwaki T and *Goshima G. Five factors can reconstitute all three phases of microtubule polymerization dynamics. J Cell Biol, in press (2016)
  • Yamada M, Miki T and *Goshima G. Imaging mitosis in the moss Physcomitrella patens. Methods Mol Biol 1413 :263-282 (2016)
  • Miki T, Nakaoka Y and *Goshima G. Live cell microscopy-based RNAi screening in the moss Physcomitrella patens. Methods Mol Biol 1470: 225-246 (2016)
  • *Watanabe S., Shioi G, Furuta Y and *Goshima G. Intra-spindle microtubule assembly regulates clustering of microtubule-organizing centers during early mouse development. Cell Rep 15(1) :54-60 (2016)
  • *Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich D.W and Goshima G. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission. Mol Biol Cell 27(5) :812-27 (2016)
  • Gluszek A.A, Cullen C.F, Li W, Battaglia R.A, Radford S.J, Costa M.F, McKim K.S, Goshima G and *Ohkura H. The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes. J Cell Biol 211 (6): 1113-20 (2015)
  • Ito A, and *Goshima G. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. J Cell Biol 211 (5): 999-1009 (2015)
  • Miki T, Nishina M,, and *Goshima G. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Cell Physiol 56(4) :737-49 (2015)
  • Jonsson E, Yamada M, Vale RD and *Goshima G. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nature Plants 1 (7): 15087 (2015)

A03 Team Shin

Hye-Won Shin
  • Takatsu H, Takayama M, Naito T, Takada N, Tsumagari K, Ishihama Y, Nakayama K, and *Shin HW. ATP11C, a phospholipid flippase, is endocytosed and downregulated by Ca2+-mediated protein kinase C (PKC) activation. Nat. Commun. accepted. (2017)
  • Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, Takatsu H and *Shin HW The phospholipid flippase ATP9A is required for recycling pathway from endosomes to the plasma membrane. Mol Biol Cell 27: 3883-3893 (2016) (Selected for Highlights) 査読有
  • Miyano R, Matsumoto T, Takatsu H, Nakayama K and *Shin HW. Alteration of transbilayer phospholipid compositions is involved in cell adhesion, cell spreading, and focal adhesion formation. FEBS Lett, 590: 2138-2145 (2016)
  • Takada N, Takatsu H, Miyano R, Nakayama K and *Shin HW. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells. J Lipid Res. 56(11):2151-2157 (2015)
  • Hanai A, Ohgi M, Yagi C, Ueda T, Shin HW and *Nakayama K. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J Biochem. 159(2):201-208 (2016)
  • Naito T, Takatsu H, Miyano R, Takada N, Nakayama K and *Shin HW.Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics. J Biol Chem. 290(24):15004-15017 (2015)
  • Takashima K, Saitoh A, Funabashi T, Hirose S, Yagi C, Nozaki S, Sato R, Shin HW and *Nakayama K.COPI-mediated retrieval of SCAP is crucial for regulating lipogenesis under basal and sterol-deficient conditions. J Cell Sci. 128(15):2805-2815 (2015)
  • Kubo K, Kobayashi M, Nozaki S, Yagi C, Hatsuzawa K, Katoh Y, Shin HW, Takahashi S and *Nakayama K.SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles. Biol Open. 4(7):910-920 (2015)

A03 Team Sugimura

Kaoru Sugimura
  • Sugimura K, Lenne PK and *Graner F. Measuring forces and stresses in situ in living tissues. Development, 143(2):186-196 (2016)
  • Guirao B, Rigaud SU, Bosveld F, Bailles A, López-Gay J, Ishihara S, Sugimura K, Graner F and Bellaïche Y. Unified quantitative characterization of epithelial tissue development. eLife, 4:e08519 (2015)

A03 Team Kubori

Tomoko Kubori
  • *Kubori T, Bui TX, Hubber A, and *Nagai H. Legionella RavZ play a role in preventing ubiquitin recruitment to bacteria-containing vacuoles. Front. Cell. Infect. Microbiol. 7:384 doi: 10.3389/fcimb.2017.00384 (2017)
  • Hubber A, Kubori T, Coban C, Matsuzawa T, Ogawa M, Kawabata T, Yoshimori T and *Nagai H. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 7:44795 doi:10.1038/srep 44795. (2017)
  • Hirayasu K, Saito F, Suenaga T, Shida K, Arase N, Oikawa K, Yamaoka T, Murota H, Chibana H, Nakagawa I, Kubori T, Nagai H, Nakamaru Y, Katayama I, Colonna M and Arase H. Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2. Nature Microbiol, 1(6):16054 doi: 10. 1038/NMICROBIOL. 2016.54. (2016)
  • *Kubori T. Life with bacterial secretion systems. PLoS Pathog, 12(8):e1005562 (2016)
  • Kubori T and *Nagai H. The Type IVB secretion system: an enigmatic chimera. Current Opinion in Microbiology 29:22-29 (2016)
  • Kuroda T,Kubori T, Xuan Thanh Bui, Hyakutake A, Uchida Y, *Imada K and *Nagai H. Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep. 5 10192 (2015)

A03 Team Iwadate

Yoshiaki Iwadate
  • Okimura C and *Iwadate Y. Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes. Cell Adhes Migr 10(4): 406-418 (2016)
  • Okimura C, Ueda K, Sakumura Y and *Iwadate Y. Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching. Cell Adhes Migr 10(4): 331-341 (2016)
  • Sonoda A, Okimura C and *Iwadate Y. Shape and size of keratocytes are related to the distribution and magnitude of their traction forces. Cell Struct Funct, 41(1):33-43 (2016)
  • Nakata T, Okimura C, Mizuno T and *Iwadate Y. The role of stress fibers in the shape determination mechanism of fish keratocytes. Biophys J, 110(2):481-492 (2016)
  • Narematsu N, Quek R, *Chiam K-H and *Iwadate Y. Ciliary metachronal wave propagation on the compliant surface of Paramecium cells. Cytoskeleton, 72(12):633-646 (2015)
  • Nakashima H, Okimura C and *Iwadate Y. The molecular dynamics of crawling migration in microtubule-disrupted keratocytes. Biophys Physicobiol, 12:21-29 (2015)

A03 Team Hayashi

Ikuko Hayashi
  • Maki T, Grimaldi A D, Fuchigami S, Kaverina I and Hayashi I. CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics. J Mol Biol , 427: 2379-95 (2015)
Hisashi Hirano
  • Ban T, Sato G R, Nishiyama A, Akiyama A, Takasuna M, Umehara M, Suzuki S, Ichino M, Matsunaga S, Kimura A, Kimura Y, Yanai H, Miyashita S, Kuromitsu J, Tsukahara K, Yoshimatsu K, Endo I, Yamamoto T, Hirano H, Ryo A, Taniguchi T and *Tamura T. Lyn kinase Ssuppresses the transcriptional activity of IRF5 in the TLR-MyD88 pathway to restrain the development of autoimmunity. Immunity. 45(2): 319-332 (2016) 
  • Kimura A, Kurata Y, Nakabayashi J, Kagawa H and *Hirano H. N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system. J Proteomics 130: 33-41 (2016)
  • Nakamura H, Yamashita N, Kimura A, Kimura Y, Hirano H, Makihara H, Kawamoto Y, Jitsuki-Takahashi A, Yonezaki K, Takase T, Miyazaki T, Nakamura F, Tanaka F and *Goshima Y. Comprehensive behavioral study and proteomic analyses of CRMP2-deficient mice. Genes Cells in press
  • Yamamoto H, Fujioka Y, Suzuki S W, Noshiro D, Suzuki H, Kondo-Kakuta C, Kimura Y, Hirano H, Ando T, *Noda N N and *Ohsumi Y. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell. 38(1): 86-99 (2016)
  • Enomoto K, Watanabe-Susaki K, Kowno M, Takada H, Intoh A, Yamanaka Y, Hirano H, Sugino H, Asashima M and Kurisaki A. Identification of novel proteins differentially expressed in pluripotent embryonic stem cells and differentiated cells. J Med Invest 62(3-4): 130-136 (2015) .
  • Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y and Nakatogawa H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522(7556): 359-362 (2015)
  • Okayama A, Miyagi Y, Oshita F, Ito H, Nakayama H, Nishi M, Kurata Y, Kimura Y, *Ryo A and *Hirano H. Identification of Tyrosine-Phosphorylated Proteins Upregulated during Epithelial-Mesenchymal Transition Induced with TGF-β. J Proteome Res 14(10): 4127-4136 (2015)
  • Suzuki S W, *Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, Hirano H and *Ohsumi Y. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc Natl Acad Sci USA, 112(11): 3350-3355, 2015.
  • Yamashita K, Ide M, Furukawa K T, Suzuki A, Hirano H and *Ohno S. Tumor suppressor protein Lgl mediates G1 cell cycle arrest at high cell density by forming an Lgl-VprBP-DDB1 complex. Mol Biol Cell 26(13): 2426-2438 (2015)

A03 Team Yagi

Yoshiki Yagi
  • Kamimura S, Fujita Y, Wada Y, Yagi T and Iwamoto H. X-ray fiber diffraction analysis shows dynamic changes in axial tubulin repeats in native microtubules depending on paclitaxel content, temperature and GTP-hydrolysis. Cytoskeleton , (Hoboken)73(3):131-44 (2016)
  • ●Ichikawa M, Saito K, Yanagisawa HA, Yagi T, Kamiya R, Yamaguchi S, Yajima J, Kushida Y, Nakano K, Numata O and *Toyoshima YY. Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain. Mol Biol Cell, 26(23):4236-47 (2015)

A03 Team Nakane

Daisuke Nakane
  • Nakane D, Kenri T, Matsuo L and *Miyata M. Systematic structural analyses of attachment organelle in Mycoplasma pneumonia.PLOS Pathogens 11(12):e1005299 (2015)
  • *McBride MJ, Nakane D. Flavobacterium gliding motility and the type IX secretion system.Current Opinion in Microbiology 28:72-77 (2015)

A03 Team Okada

Yasushi Okada
  • *Hayashi K, Tsuchizawa Y, Iwaki M, and *Okada Y. Application of the fluctuation theorem for non-invasive force measurement in living neuronal axons. Mol Biol Cell in press
  • Shima T, Morikawa M, Kaneshiro J, Kambara T, Kamimura S, Yagi T, Iwamoto H, Uemura S, Shigematsu H, Shirouzu M, Ichimura T, Watanabe TM, Nitta R, *Okada Y and *Hirokawa N. Kinesin-binding–triggered conformation switching of microtubules contributes to polarized transport J Cell Biol Oct 2018, jcb.201711178; DOI: 10.1083/jcb.201711178
  • Takeshima T, Takahashi T, Yamashita J, Okada Y and *Watanabe S. A multi-emitter fitting algorithm for potential live cell super-resolution imaging over a wide range of molecular densities. Journal of Microscopy 271(3):266-281 (2018) 査読有
  • Ueno A, Omori Y, Sugita Y, Watanabe S, Chaya T, Kozuka T, Kon T, Yoshida S, Matsushita K, Kuwahara R, Kajimura N, Okada Y and *Furukawa T. Lrit1, a retinal transmembrane protein, regulates selective synapse formation in cone photoreceptor cells and visual acuity. Cell Reports 22(13): 3548-3561. (2018) 査読有
  • Chiba K, Chien K, Sobu Y, Hata S, Kato S, Nakaya T, Okada Y, Nairn AC, Kinjo M, Taru H, Wang R and *Suzuki T. Phosphorylation of KLC1 modifies interaction with JIP1 and abolishes the enhanced fast velocity of APP transport by kinesin-1. Molecular Biology of the Cell 28: 3857-3869. (2017) 査読有
  • Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, Joti Y, Tomita M, Hibino K, Kanemaki MT, Wendt KS, Okada Y, Nagai T and *Maeshima K. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Molecular Cell 67: 282-293. (2017) 査読有
  • Chinen T, Liu P, Shioda S, Pagel J, Cerikan B, Lin TC, Gruss O, Hayashi Y, Takeno H, Shima T, Okada Y, Hayakawa I, Hayashi Y, Kigoshi H, Usui T and *Schiebel E. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle.Nat Commun 6:8722 (2015) 査読有
  • Ohyanagi T, Shima T, Okada Y, Tsukasaki Y, Komatsuzaki A, Tsuboi S and *Jin T. Compact and stable SNAP ligand-conjugated quantum dots as a fluorescent probe for single-molecule imaging of dynein motor protein.Chem Commun 51(80):14836-9 (2015) 査読有

A03 Team Morimoto

Yusuke Morimoto
  • Morimoto YV, Kami-ike N, Miyata T, Kawamoto A, Kato T, *Nambaa K, *Minamino T. High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences mBIO 7(6): e01911-16 (2016)
  • *Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M and *Namba K. TFliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.Microbiologyopen (2016)
  • *Minamino T, Morimoto YV, Hara N, Aldridge PD and *Namba K. The bacterial flagellar type III export gate complex is a dual fuel engine that can use both H+ and Na+ for flagellar protein export.PLOS Pathogens 12 e1005495 (2016)
  • Baker MA, Hynson RM, Ganuelas LA, Mohammadi NS, Liew CW, Rey AA, Duff AP, Whitten AE, Jeffries CM, Delalez NJ, Morimoto YV, Stock D, Armitage JP, Turberfield AJ, Namba K, Berry RM and *Lee LK. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.Nature Structural & Molecular Biology 23 : 197-203 (2016)
  • ●Islam Md. S, Morimoto YV, Kudo S and *Nakamura S. H+ and Na+ are involved in flagellar rotation of the spirochete Leptospira.Biochemical and Biophysical Research Communications 466 :196–200 (2015)


Openly recruited research projects(2013-2014)

A01 Team Sato

Ken Sato
  • Kakoi S, Yorimitsu T and *Sato K. COPII machinery cooperates with ER-localized Hsp40 to sequester misfolded membrane proteins into ER-associated compartments. Mol. Biol. Cell 24: 633-642 (2013)
  • Yorimitsu T, Sato K and *Takeuchi M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front. Plant Sci in press
  • Kodera C, Yorimitsu T and *Sato K. Sec23 homolog Nel1 is a novel GTPase-activating protein for Sar1 but does not function as a subunit of the COPII coat. J. Biol. Chem 289: 21423-21432 (2014)
  • Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A and *Ueda T. Plant vacuolar trafficking occurs through distinctly regulated pathways.Curr. Biol 24: 1375-1382 (2014)

A01 Team Toyoshima

Yoko Y. Toyoshima
  • ●Yamaguchi S, Saito K, Sutoh M, Nishizaka T, Toyoshima Y Y and *Yajima J. Torque generation by axonemal outer-arm dynein. Biophys J 108(4): 872-879 (2015)
  • Torisawa T, Ichikawa M, Furuta A, Saito K, Oiwa K, Kojima H, *Toyoshima Y Y and *Furuta K. Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nature Cell Biol 16(11): 1118-1124 (2014)
  • Nishikawa Y, Oyama T, Kamiya N, Kon T, Toyoshima Y Y, Nakamura H and *Kuris G. Structure of the Entire Stalk Region of the Dynein Motor Domain. J Mol Biol 426(19): 3232-3245 (2014)
  • Ito M, Kabir A M R, Inoue D, Torisawa T, Toyoshima YY, Sada K and *Kakugo A. Formation of ring-shaped microtubule assemblies through active self-organization on dynein. Polymer J 46: 220–225 (2014)
  • Obinata T, Amemiya S, Takai R, Sato N, Ichikawa M and Toyoshima YY. Sea lily muscle lacks a troponin-regulatory system, while it contains paramyosin. Zool Sci 31: 122-128 (2014)
  • *Furuta K, Furuta A, Toyoshima YY, Amino M, Oiwa K, and Kojima H. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. Proc Natl Acad Sci U S A 110: 501-506 (2013)

A01 Team Arai

Munehito Arai
  • Hayashi Y, Yasugi F and *Arai M. Role of Cysteine Residues in the Structure, Stability, and Alkane Producing Activity of Cyanobacterial Aldehyde Deformylating Oxygenase. PLoS ONE 10(4):e0122217 (2015)
  • Oikawa H, Suzuki Y, Saito M, Kamagata K, Arai M and *Takahashi S. Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence. Scientific Reports 3:2151 (2013)
  • Ohori Y, Okazaki H, Watanabe S, Tochio N, Arai M, Kigawa T and *Nishimura C. Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR. Biochim. Biophys. Acta 1844(3):520-526 (2014)

A01 Team Arata

> Toshiaki Arata
  • Matsuo T, Arata T, Oda T, Nakajima K, Ohira-Kawamura S, Kikuchi T, and *Fujiwara S. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering. Biochem Biophys Res Commun  459(3):493-497 (2015)
  • Yasuda S, Yanagi T, Yamada MD, Ueki S, Maruta S, Inoue A, and *Arata T. Nucleotide-dependent displacement and dynamics of the α-1 helix in kinesin revealed by site-directed spin labeling EPR. Biochem Biophys Res Commun 443: 911-916 (2014)
  • Ishii, K, Terauchi S, Murakami R, Valencia Swain J, Mutoh R, Mino H, Maki K, *Arata T, and *Ishiura M. Site-directed spin labeling-electron spin resonance mapping of the residues of cyanobacterial clock protein KaiA that are affected by KaiA-KaiC interaction. Genes Cells 19: 297-324 (2014)
  • Ueda K, Kimura-Sakiyama C, Aihara T, Miki M, and *Arata T. Calcium-dependent interaction sites of tropomyosin on reconstituted muscle thin filaments with bound myosin heads as studied by site-directed spin-labeling. Biophys J 105(10): 2366-2373 (2013)
  • Matsuo T, Arata T, Oda T, and *Fujiwara S. Difference in hydration structures between F-actin and myosin subfragment-1 detected by small-angle X-ray and neutron scattering. BIOPHYSICS 9: 99-106 (2013)
  • Narumi R, Yamamoto T, Inoue A, and *Arata T. Substrate-induced conformational changes in sarcoplasmic reticulum Ca2+-ATPase probed by surface modification using diethylpyrocarbonate with mass spectrometry. FEBS Lett 586(19): 3172-3178 (2012)
  • Yasuda S, Hara H, Tokunaga F, and *Arata T. Spatial arrangement of rhodopsin in retinal rod outer segment membranes studied by spin-labeling and pulsed electron double resonance. Biochem Biophys Res Commun 425(2): 134-137 (2012)
  • Abe J, Ueki S, Arata T, Nakazawa T, Yamauchi S, and *Ohba Y,Improved Sensitivity by Isotopic substitution in Distance Measurements Based on Double Quantum Coherence EPR. Appl Mag Reson 42: 473-485 (2012)

A01 Team Sonobe

Seiji Sonobe
  • Nishigami Y, Ichikawa M, Kazama T, Kobayashi R, Shimmen T, Yoshikawa K and *Sonobe S. Reconstruction of active regular motion in amoeba extract: Dynamic cooperation between sol and gel states. PLOS ONE 8: e70317 (2013)

A01 Team Kamiya

Ritsu Kamiya
  • Wakabayashi K and *Kamiya R. Axonemal motility in Chlamydomonas. Meth. Cell Biol. 127:387-402 (2015)
  • Nakazawa Y, Ariyoshi T, Noga A, Kamiya R and *Hirono M. Space-Dependent Formation of Central Pair Microtubules and Their Interactions with Radial Spokes. PLOS ONE 9(10): e110513 (2014)
  • Oda T, Yanagisawa H, Kamiya R, and *Kikkawa M. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346(6211): 857-860 (2014)
  • Kato YS, *Yagi T, Harris SA, Ohki SY, Yura K, Shimizu Y, Honda S, Kamiya R, Burgess SA and *Tanokura M. Structure of the Microtubule-Binding Domain of Flagellar Dynein Structure 22(11): 1628-1638 (2014)
  • Owa M, Furuta A , Usukurab J, Arisaka F, Stephen M Kingd, George B Witmane, Kamiya R and Wakabayashi K. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci USA 111(26): 9461–9466 (2014)
  • *Kamiya R and Yagi T. Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zool. Sci 31(10): 633–644 (2014)
  • Kubo T, Yanagisawa HA, Liu Z, Shibuya R, Hirono M and *Kamiya R. A conserved flagella-associated protein in Chlamydomonas, FAP234, is essential for axonemal localization of tubulin polyglutamylase TTLL9. Mol Biol Cell 25(10): 107-17 (2014)
  • ●*Ishikawa H, Ide T, Yagi T, Jiang X, Hirono M, Sasaki H, Yanagisawa H, Wemmer KA, Stainier DY, Qin H, Kamiya R and *Marshall WF. TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella. Elife e01566 (2014)
  • ●Yamamoto R, Song K, Yanagisawa H, Fox L, Yagi T, Wirschell M, Hirono M, Kamiya R, Nicastro D and *Sale W S. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. J. Cell Biol 201:263-278 (2013)
  • ●Ide T, Owa M, King S M, Kamiya R, and *Wakabayashi K. Protein-protein interactions between intermediate chains and the docking complex of Chlamydomonas flagellar outer arm dynein. FEBS Lett 587:2143-2149 (2013)

A01 Team Wakabayashi T

Takeyuki Wakabayashi
  • ●Gomibuchi M, Uyeda TQP and *Wakabayashi T. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate. Biochem Biophys Res Commun 441(4):844-848 (2013) 
  • Minoda H, Okabe T, Inayoshi Y, Minakata T, Miyauchi Y, Tanokura M, Katayama E, Wakabayashi T, Akimoto T, and *Sugi H. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber. Biochem Biophys Res Commun 405(4):651-656 (2011) 

A01 Team Nishiyama

Masayoshi NISHIYAMA
  • Okuno D, Nishiyama M and Noji H. Viewing the rotation of molecular motors at high pressure. Asia Pacific Physics News Letter 3(2): 25 (2014)
  • ●*Nishiyama M, Sowa Y, Kimura Y, Homma M, Ishijima A and Terazima M. High hydrostatic pressure induces CCW to CW reversals of the Escherichia coli flagellar motor. J Bacteriol 195(8): 1809-14 (2013)
  • ●*Watanabe TM, Imada K, Yoshizawa K, Nishiyama M, Kato C, Abe F, Morikawa T, Kinoshita M, Fujita H and Yanagida T. Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure. PLOS ONE 8(8): e73212 (2013)
  • Okuno D, *Nishiyama M and *Noji H. Single molecule analysis of the rotation of F1-ATPase under high hydrostatic pressure. Biophys J 105(7): 1635-1642 (2013)

A01 Team Kenri

Tsuyoshi Kenri
  • *Kenri T, Sekizuka T, Yamamoto A, Iwaki M, Komiya T, Hatakeyama T, Nakajima H, Takahashi M, Kuroda M and Shibayama K. Genetic characterization and comparison of Clostridium botulinum isolates from botulism cases in Japan between 2006 and 2011. Appl Environ Microbiol 80(22):6954-64 (2014)
Takashi Shimizu
  • *Shimizu T, Kimura Y, Kida Y, Kuwano K, Tachibana M, Hashino M and Watarai M. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4. Infect Immun 82(7):3076-86 (2014)
Shigetaro Mori
  • *Mori S, Kim H, Rimbara E, Arakawa Y and Shibayama K. Roles of Ala-149 in the catalytic activity of diadenosine tetraphosphate phosphorylase from Mycobacterium tuberculosis H37Rv. Biosci Biotechnol Biochem 79(2):236-238 (2015)
  • Kim H, Shibayama K, Rimbara E and *Mori S. Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide. PLoS One 9(6):e100062 (2014)

A02 Team Watanabe

Rikiya Watanabe
  • Watanabe R, Koyasu K, You H, Tanigawara M and *Noji H. Torque transmission mechanism via DELSEED loop of F1-ATPase. Biophysical Journal 108(5):1144-1152 (2015)
  • Yukawa A, *Watanabe R and *Noji H. Effects of an ATP analogue, adenosine 5′-[α-thio]-triphosphate, on F1-ATPase rotary catalysis, torque generation, and inhibited intermediated formation. Biochemical and Biophysical Research Communications 458(3):515-519 (2015)
  • Yukawa A, Iino R, Watanabe R, Hayashi S and *Noji H. Key Chemical Factors of Arginine Finger Catalysis of F1-ATPase Clarified by an Unnatural Amino Acid Mutation Biochemistry 54(2): 472-480 (2015)
  • *Watanabe R, Soga N, Yamanaka T, *Noji H. High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition. Scientific Reports 4 7076 (2014)
  • Watanabe R, Minagawa Y and *Noji H. Thermodynamic analysis of F1-ATPase rotary catalysis using high-speed imaging. Protein Science E-pub (2014)
  • Arai HC, Yukawa A, Iwatate RJ, Kamiya M, Watanabe R, Urano Y, and *Noji H. Torque Generation Mechanism of F1-ATPase upon NTP Binding. Biophysical Journal(107):156-64 (2014)
  • *Watanabe R,Soga N, Fujita D, Tabata KV, Yamauchi L, Kim SH, Asanuma D, Kamiya M, Urano Y, *Suga H, and *Noji H. Arrayed Lipid Bilayer Chambers Allow Single-Molecule Analysis of Membrane Transporter Activity. Nature Communications(5) 4519 (2014)
  • Watanabe R, Matsukage Y, Yukawa A, Tabata KV and Noji H. Robustness of the Rotary Catalysis Mechanism of F1-ATPase. Journal of Biological Chemistry 289(28): 19331-40(2014)
  • Watanabe R and *Noji H. Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation. Scientific Reports 4:4962(2014)
  • Watanabe R and *Noji H. Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein. Nature Communications(5):3486(2014)
  • Watanabe R, Hayashi K, Ueno H and *Noji H. Catalysis-enhancement via rotary fluctuation of F1-ATPase. Biophysical Journal(105):2385-91(2013)

A03 Team Nakamura

Shuichi Nakamura
  • Md. Islam S, Takabe K, Kudo S and *Nakamura S. Analysis of the chemotactic behaviour of Leptospira using microscopic agar-drop assay. FEMS Microbiol Lett 356:39-44 (2014)
  • ● *Nakamura S, Leshansky A, Magariyama Y, Namba K and *Kudo S. Direct measurement of helical cell motion of the spirochete Leptospira. Biophys J 106:47-54 (2014)

A03 Team Wakabayashi K

Ken-ichi Wakabayashi
  • Wakabayashi K and Kamiya R. Axonemal motility in Chlamydomonas. Meth. Cell Biol. (2015) in press
  • ●Owa M, Furuta A , Usukurab J, Arisaka F, Stephen M Kingd, George B Witmane, Kamiya R and Wakabayashi K. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci USA111(26): 9461–9466 (2014)
  • ●Ide T, Owa M, King S.M, Kamiya R, and *Wakabayashi K. Protein-protein interactions between intermediate chains and the docking complex of Chlamydomonas flagellar outer arm dynein. FEBS Lett 587:2143-2149 (2013)

A03 Team Kaito

Chikara Kaito
  • Ikuo M, Nagano G, Saito Y, Mao H, Sekimizu K and *Kaito C. Inhibition of exotoxin production by mobile genetic element SCCmec-encoded psm-mec RNA is conserved in staphylococcal species. PLoS ONE 9(6):e100260 (2014)
  • Miyashita A, Kizaki H, Kawasaki K, Sekimizu K and *Kaito C. Primed Immune Responses to Gram-negative Peptidoglycans Confer Infection Resistance in Silkworms. J Biol Chem 289(20):14412-21 (2014)
  • Omae Y, Sekimizu K, *Kaito C. Identification of Staphylococcus aureus colony-spreading stimulatory factors from mammalian serum. PLoS ONE 9(5):e97670 (2014)
  • Numata S, Nagata M, Mao H, Sekimizu K and *Kaito C. CvfA and PNPase act in an opposing manner to regulate Staphylococcus aureus virulence. J Biol Chem 289(12):8420-31 (2014)
  • *Aoyagi T#, Kaito C#, Sekimizu K, Omae Y, Saito Y, Mao H, Inomata S, Hatta M, Endo S, Gu Y, Tokuda K, Yano H, Kitagawa M and Kaku M. Impact of psm-mec in the Mobile Genetic Element on the Clinical Characteristics and Outcome of SCCmec-II Methicillin-resistant Staphylococcus aureus Bacteremia in Japan. Clin Microbiol Infect (2014) in press #Contributed equally
  • Omae Y, Hanada Y, Sekimizu K an d *Kaito C. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. J Biol Chem 288(35):25542-50 (2013)
  • *Kaito C, Saito Y, Ikuo M, Omae Y, Mao H, Nagano G, Fujiyuki T, Numata S, Han X, Obata K, Hasegawa S, Yamaguchi H, Inokuchi K, Ito T, Hiramatsu K, and Sekimizu K. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog 9(4):e1003269 (2013)

A03 Team Masuda

Shinji Masuda
  • Yuzawa Y, *Shimojima M, Sato R, Mizusawa N, Ikeda K, Suzuki M, Iwai M, Hori K, Wada H, Masuda S and Ohta H. Cyanobacterial monogalactosyldiacylglycerol-synthesis pathway is involved in normal unsaturation of galactolipids and low-temperature adaptation of Synechocystis sp. PCC 6803 Biochim Biophys Acta 1841:475-483 (2014)
  • *Masuda S, Nakatani Y, Ren, S. and Tanaka M. Blue light-mediated manipulation of transcription factor activity in vivo. ACS Chem. Biol 8:2649-2653 (2013)
  • *Masuda S, Hori K, Maruyama F, Ren S, Sugimoto S, Yamamoto N, Mori H, Yamada T, Sato S, Tabata S, Ohta H and Kurokawa K. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum . Genome Announcement 1:e00577-13 (2013)

A03 Team Uehara

Ryota Uehara
  • *Uehara R, Tsukada R, Kamasaki T, Poser I, Yoda K, W. Gerlich D and *Goshima G. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol 202(4):623-36 (2013)

A03 Team Iwadate

Yoshiaki Iwadate
  • *Iwadate Y, Okimura C, Sato K, Nakashima Y, Tsujioka M and Minami K. Myosin-II-mediated directional migration of Dictyostelium cells in response to cyclic stretching of substratum. Biophys J, 104:748-758 (2013)
  • Tsugiyama H, Okimura C, Mizuno T and *Iwadate Y. Electroporation of adherent cells with low sample volumes on a microscope stage. J Exp Biol, 216:3591-3598 (2013)

A03 Team Takeya

Ryu Takeya
  • Yamamoto A, Takeya R, Matsumoto M, Nakayama K and *Sumimoto H. Phosphorylation of Noxo1 at threonine-341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. FEBS J 280:5145-5159 (2013)
  • Arimura T, Takeya R, Ishikawa T, Yamano T, Matsuo A, Tatsumi T, Nomura T, *Sumimoto H and *Kimura A. Dilated cardiomyopathy-associated FHOD3 variant impairs the ability to induce activation of transcription factor SRF. Circ J 77:2990-2996 (2013)

A03 Team Katayama

Tsutomu Katayama
  • Ozaki S, Matsuda Y, Keyamura K, Kawakami H, Noguchi Y, Kasho K, Nagata K, Masuda T, Sakiyama Y and *Katayama, T. A Replicase clamp-binding dynamin-like protein promotes colocalization of nascent DNA strands and equipartitioning of chromosomes in E. coli. Cell Reports 4:985-995 (2013)
  • Su'etsugu M, Harada Y, Keyamura K, Matsunaga C, Kasho K, Abe Y, Ueda T and *Katayama, T. The DnaA N-terminal domain interacts with Hda to facilitate replicase clamp-mediated inactivation of DnaA. Environ. Microbiol. 15:3183-3195 (2013)

A03 Team Ogura

Teru Ogura
  • Johjima A, Noi K, Nishikori S, Ogi H, *Esaki M and *Ogura T. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of both α- and β-tubulins and basic amino acid residues in the AAA+ ring pore. J Biol Chem (2015) in press
  • ●Noi K, Yamamoto D, Nishikori S, Arita-Morioka K, Kato T, Ando T and *Ogura T. High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure 21:1992-2002 (2013)

A03 Team Hayashi

Ikuko Hayashi
  • Sato Y, Hayashi K, Amano Y, Takahashi M, Yonemura S, Hayashi I, Hirose H, Ohno S, *Suzuki A. MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane. Nature Commun 5:5266 (2014)
  • Grimaldi AD, Maki T, Fitton BP, Roth D, Yampolsky D, Davidson MW, Svitkina T, Straube A, Hayashi I, *Kaverina I, CLASPs Are Required for Proper Microtubule Localization of End-Binding Proteins. Dev Cell 3(3):343-352 (2014)
  • Sato Y, Akitsu M, Amano Y, Yamashita K, Ide M, Shimada K, Yamashita A, Hirano H, Arakawa N, Maki T, Hayashi I, Ohno S and *Suzuki A. A novel PAR-1-binding protein, MTCL1, plays critical roles in organizing microtubules in polarizing epithelial cells. J Cell Sci 126(20):4671-83 (2013)

A03 Team Mabuchi

Issei Mabuchi
  • Yano K, Uesono Y, Yoshida S, Kikuchi A, Kashiwazaki J, Mabuchi I and *Kikuchi Y. Mih1/Cdc25 is negatively regulated by Pkc1 in Saccharomyces cerevisiae. Genes to Cells 18(6):425-441 (2013)
  • *Nakase Y, Nakase M, Kashiwazaki J, Murai T, Otsubo Y, Mabuchi I, Yamamoto M, Takegawa K and Matsumoto T. The fission yeast β-arrestin-like protein Any1 is involved in TSC-Rheb signaling and the regulation of amino acid transporters. J Cell Sci 126(7):3972-3981 (2013)
  • Mishra M, Kashiwazaki J, Takagi T, Srinivasan R, Huang Y, *Balasubramanian MK, *Mabuchi I. In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nat Cell Biol 15(7):853-9 (2013)

A03 Team Takano

Mitsunori Takano
  • Nie QM, Togashi A, Sasaki TN, Takano M, Sasai M and Terada TP. Coupling of lever arm swing and biased Brownian motion in actomyosin. PLoS Comput Biol 10(4): e1003552 (2014)

A03 Team Wada

Hirofumi Wada
  • Wada H, Nakane D and Hsuan-Yi Chen. Bidirectional Bacterial Gliding motility powered by the collective transport of cell surface proteins. Physical Review Letters 111: 248102 (2013)
  • Nakane D, Sato K, Wada H, Mark J. McBride and Nakayama K. Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci U S A 110: 11145 (2013)

A03 Team Shiomi

Daisuke Shiomi
  • Kawazura T, Matsumoto K, Kojima K, Kato F, Kanai T, Niki H and *Shiomi D. Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Mol Microbiol in press (2017) 査読有 
  • Shiomi D and *Niki H. A mutation in the promoter region of zipA, a component of the divisome, suppresses the shape defect of RodZ-deficient cells. Microbiology Open 2(5): 798-810 (2013)

A03 Team Haruta

Shin Haruta
  • Morohoshi S, Matsuura K and *Haruta S. Secreted protease mediates interspecies interaction and promotes cell aggregation of the photosynthetic bacterium Chloroflexus aggregans FEMS Microbiol Lett 362(3): 1-5 (2015)

Back to Top