ビデオ・アーカイブ
筋収縮中のアクチン結合ミオシン-II(クロスブリッジ)の動き
種名:Rabbit
大阪市立大学 片山栄作
動画前半は従来の単純なレバーアーム首振り説に基づくミオシン・クロスブリッジ(頭部)の動きを示す。このような動きは、ATP結合の有無におけるミオシンの結晶構造の特徴、および、「張力発生中にモーター領域は動かない」との実験事実に基づいて想定された。パワーストロークは、ATP非結合状態においてアクチンと強く結合する硬直複合体中のミオシン(1DFK:レバーアームは伸展状態)と、ATPを結合しレバーアームが強く屈曲した構造(1DFL) の間の遷移である。アクチンに結合するモーター領域がアクチンに固定されればレバーアーム部分が動き、首を振ることになる。 動画後半は急速凍結レプリカ法により片山(文献1-2) が直接観察した電子顕微鏡画像から示唆されるミオシン頭部の動きを示し、われわれの解析(文献3-5)により存在が明らかになった新たな中間体の構造を含む。In vitroアクチン滑り運動中のミオシンの急速凍結レプリカ像は、動画前半にある従来の説では説明不可能なクロスブリッジの構造を示した(文献2)。われわれはその構造を説明できる新たな中間体を見出し(文献4)、その3次元構造を再構成した(文献4-5)。その新たな構造を含め、時分割化学架橋法による結果(文献6)を勘案することにより、観察結果の妥当な解釈が可能となった(文献5)。クロスブリッジ・サイクル過程の大部分で新たなコンフォメーションを取っていることが想定される。 [文献] 1. Katayama E. The effects of various nucleotides on the structure of actin-attached myosin subfragment-1 studied by quick-freeze deep-etch electron microscopy. J Biochem. 1989 Nov;106(5):751-70. 2: Katayama E. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay. J Mol Biol. 1998 May 1;278(2):349-67. 3: Katayama E, Ohmori G, Baba N. Three-dimensional image analysis of myosin head in function as captured by quick-freeze deep-etch replica electron microscopy. Adv Exp Med Biol. 1998;453:37-45. 4: Katayama E, Ichise N, Yaeguchi N, Yoshizawa T, Maruta S, Baba N. Three-dimensional structural analysis of individual myosin heads under various functional states. Adv Exp Med Biol. 2003;538:295-304. 5: Kimori Y, Baba N, Katayama E. Novel configuration of a myosin II transient intermediate analogue revealed by quick-freeze deep-etch replica electron microscopy. Biochem J. 2013 Feb 15;450(1):23-35. 6. Andreev OA, Reshetnyak YK. Mechanism of formation of actomyosin interface. J Mol Biol. 2007 Jan 19;365(3):551-4.